
1

C6- 1 476.1 6 / 33

COPY 12

STUDY OF SPACEBORNE
ROCESSING

t

w
0 - a n
8
Q

f

I
1

i

a n
F
v)
U.
0

m ln
(D
t

Prepared under Contract No. NAS 12-108 by

Autonetics Division of North American Rockwell Corporation

Electronics Research Center
National Aeronautics and Space Administration

i u

~H .-
+
I

C6-1476.16133

STUDY OF SPACEBORNE
MULTIPROCESSING

SECOND QUARTERLY REPORT - PHASE II

30 Oct 1967

L.J. Koczela

Principal Investigator

Approved By:

8 . 6 ,T?
G.B. Way

Chief Engineer"
Data Systems Division

Prepared under Contract No . N A S 12-108 by

Autonetics Division of North American Rockwell Corporation
3370 Miraloma Avenue, Anaheim. California 92803

Electronics Research Center
Nat iona l Aeronautics and Space Administration

FOR EW OR D

This second quarterly report describes the work accomplished during the
second quarter of Phase I1 under NASA contract NAS 12-108. Spaceborne Multiproces-
sor Study. It was performed by Autonetics, a division of the Aerospace and Systems
Group of the North American Rockwell Corporation. The work was administered
under the direction of the National Aeronautics and Space Administration, Electronics
Research Center. Computer Research Laboratories, Cambridge, Massachusetts;
the NASA project manager is M r . G. Y. Wang.

The contract participants during this quarter and their primary responsibilities
a r e listed below:

L J . Koczela - Parallelism, Input/Output. Communication Operation

P. Bogue - Architecture. Communication Operation

G. J. Burnett - Macro Instructions, Processor Design

iii/iv

C6-1476.16/33

CONTENTS

1 .
2 .
3 .
4 .

5 .

6 .

7 .
8 .

9 .

Page

Introduction 1-1

.
.

Parallelism Studies 2-1

Neighbor . Neighbor Communication 3-1

Input/Output 4-1

4 . 1 Input/Output Operation 4-1
4.2 Input/Output Mechanization 4-11

Group Architecture 5-1

5 .1 Introduction
5.2 Cell States
5 .3 Cell Identification . .
5.4 Source of Instructions .
5.5 Source of Addresses . .
5.6 Sources of Data . . .
5 . 7 Execution of Instructions
5 . 8 Additional Considerations

.

5-1
5-1
5-3
5-4
5-6
5-8

5-11
5-29

Communication Bus Operation 6-1

6 . 1 Introduction 6-1

6 .3 Global Communication Operation 6-10
6.2 Local Communication Operation 6 -2

Macro Instructions 7-1

Processor Design 8-1

8 .1 Processor Features 8-1
8.2 Processor Hardware * 8-11
8 .3 Instruction Set * 8-15

. Glossary 9 -1

References R-1

v/vi

Figure

1-1.
2-1.
2-2.
2-3.
2-4.
3-1.
4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
5-1.
8-1.
8-2.
8-3.
8-4.
8-5.
8-6.
8-7.

C6-1476.16/33

I LLUSTRAT I ONS

Page

Distributed Processor Organization 1-2
Applied Parallelism Speed Curve 2-3
Applied Parallelism Speed Curve 2-4
Natural Parallelism Speed Curve 2-5
Natural Parallelism Storage Curve 2- 6

1/0 Structure 4- 2
Neighbor to Neighbor Communications 3-4

Inter Group Bus 1/0 Scheme 4- 3
Two Methods of Inter Group Bus 1/0 4- 4
Inter Cell Bus 1/0 4- 6
Selected 1/0 Approach 4- 7
1/0 Using Neighbor Lines 4- 9
Communication Lines to a Cell 4-10
Request 1/0 System 4-15
Bus Operation Example. 5- 5
12-Bit Instruction Word 8-4
U s e of Two I/B Bits 8-4
14-Bit Instruction Word 8- 6
U s e of Three I/B Bits 8- 7
16-Bit Instruction Words 8-10
18-Bit Instruction Words 8-10
Processor Section 8-12

vii/viii

L.

C6-1476.16/33

TABLES

Table

2-1.
2-2.
5-1.
5-2.
5-3.
5-4.
5-5.
5-6,
G - 1 .

Applied Parallelism Results
Natural Parallelism Results
Cell States .
Instruction Categories
Summary of Instruction Execution
GC Instructions
GC Formats
CC Transmitted Instructions
Communication Bus Commands

ix/x

Page

2- 1
2-2
5- 2

5-12
5- 13
5-15
5- 20
5-26
6-3

CG-147G. 1G/33

1. I NTRODUCT I ON

This report presents the results of the activity during the second quarter of the
Phase I1 portion of the Spaceborne Multiprocessor Study. The purpose of the Phase I1
effort is to perform a detailed investigation of the distributed processor computer
organization. In particular, the following specific tasks are to be covered during this
phase: detailed system analysis; organization logic design; failure detection, isolation,
and reconfiguration; and software analysis.

The previous quarterly report included a qualitative and quantitative description
of the computer requirements, a discussion of the semiconductor technology extrapo-
lated ten years out, a discussion of parallelism within computations and methods of
analyzing the computations for parallelism, and the development of computer organi-
zations; in particular the distributed processor computer concept, was presented.

Figure 1-1 contains a block diagram of the organizational concept. The organi-
zation is seen to consist of a number of identical cells interconnected in a particular
manner.
amount of memory (512 16-bit words) on a single MOS wafer. The cells are divided
into groups (4 groups of 20 cells each a re considered for the spaceborne application)
and these groups a r e connected by an intergroup bus for communication. Within each
group the cells communicate with each other by an intercell bus and by neighbor
communication lines.
the remaining cells can be operated independently or dependently of the controller
cell, This organization is thereby capable of simultaneously taking advantage of
applied (global control) parallelism and natural (local control) parallelism within
computations, It offers extremely high reliability for space missions by having many
levels of graceful degradation (tolerant of many internal failures before resulting in
computer system failure), It also results in low power consumption due to the ability
to turn cells on and off to closely match varying computational requirements and also
provides a system capable of being applied to a wide variety of missions due to the
flexibility of the number of cells and groups comprising the organization.

Each cell consis ts of a general purpose processor section and a small

Each group will have one cell designated as a controller cell;

This report presents the results of the applied and natural parallelism investi-
gations. Neighbor-to-neighbor communications were included in the organization
and a discussion of this topic is contained in this report.
was investigated in depth and a preliminary description of the processor section
prepared. The architecture of this organization is presented herein with a description
of the general operation of the computer system. In addition, a description of the
communication bus operation is included in this report.

The input/output scheme

1-1

CG-1476.16/33

NEIGHBOR

BUS

110 CONNECTION

-v-
INTER INTER CELLS
CELL GROUP

BUS

F, STORAGE
INPUT/OUTPUT
CONDITIONERS
DEVICES

Figure 1-1. Distributed Processor Organization

1-2

CG-147G. 16/33

2. PARALLEL1 SM STU D I ES

Section 4 of the last quarterly report contained a discussion of parallelism in
general and methods for analyzing computations to determine the amount of parallelism
within them. At that t ime the computations for the manned M a r s lander mission were
being analyzed for parallelism, The results of this analysis are included in this
report. Each of the computational tasks as defined in the requirements in the Phase I
study were investigated and the results a r e summarized in Tables 2-1 and 2-2.

Figures 2-1 and 2-2 contain the applied parallelism speed curve; they show the
computation reduction ratio vs the degree of applied parallelism available in the compu-
tation system,
quarterly report since the latter was a curve of preliminary results. The 100 percent
utilization curve in the figures is the 1-to-1 curve, i. e. , for a degree of parallelism of
2 the computation reduction ratio would be 2, for 5 it would be 5, etc. - The actual
curve is seen to deviate slowly from the 1-to-1 curve at first and then reaches an
asymptotic reduction ratio value of 13.66 for higher degrees of parallelism. The
knee of the curve occurs at approximately a degree of 15; beyond this degree the
curve deviates sharply from the 1-to-1 curve.

It should be noted that Figure 2-2 replaces Figure 4-16 of the first

Figures 2-3 and 2-4 contain the computation reduction ratio and storage
required per cell (assuming one degree of parallelism results in one cell), respectively,
vs the degree of natural parallelism available in the computation system. It should be
recalled that natural parallelism includes applied parallelism by definition. The
vertical scale in Figure 2-3 is the same as in Figure 2-1; however, note that the hori-
zontal scale is considerably larger. The computation reduction ratio curve does not

Table 2-1. Applied Parallelism Results

Degree of Applied Parallelism

1331

80 0

300

100

50

15

5

2

1

2-1

Computation Reduction Ratio

13.66

13.66

13.65

13.47

12.58

8. 75

3. 98

1. 895

1

CG-1476. 16/33

Table 2-2. Natural Parallelism Results

Dcgree of
Par allelism

1342

300

100

50

15

5

2

1

Computation
Reduction Ratio

~

42.4

42.4

42.4

28. 2

12.15

4. 6

1. 96

1

Storage
(Words /Cell)

200

350

575

1,800

5,250

12,700

24,633

have as sharp a knee as in the applied parallelism case. However, it appears that
somewhere in the range of 40 to 60 in degree of parallelism the curve starts to deviate
rapidly from the 1-to-1 curve.
out the deviations from the 1-to-1 curve. It can be seen that the curve begins to
deviate rapidly from the 1-to-1 curve in the vicinity of a degree of parallelism of
80 to 150.

The storage curve is drawn on log-log paper to bring

The above curves give an indication of the efficiency o r utilization of parallelism,
They may also be used in determining the speed-storage characterist ics of the cells.
It should be recalled from the technology section of the first quarterly report that a
storage capability of approximately 512 words per cell was considered to be achiev-
able. If this storage is available per cell, then, referring to Figure 2-4, one can see
that approximately 58 cells are needed (assuming a degree of parallelism equals one
cell). Translating this into speed requirements one can see from Figure 2-3 that a
computation reduction ratio of approximately 31 results with 58 cells. Since the speed
requirement for a single computer is approximately 1,450,000 short operations/sec
(recall that the parallelism investigations were carried out for the M a r s orbital phase
which has the maximum speed and storage requirement), the speed requirement per
cell is therefore approximately 25,000 short operations (ADD, SUB, etc.) per second.
Since these requirements did not include overhead functions (such as the executives)
one may estimate the number of cells required at approximately 80 with a storage
capability of 512 words each and requiring a speed capability of 25,000 operations per
second. One can now see that the cells will most likely be storage restricted rather
than speed restricted since the cells should be capable of more than 25,000 short
operations per second.

2-2

- -

90

80

70

60

50

40

30

20

CG-1476.16/33

10

n
1 3 > 7 9 11

COMPUTATION REDUCTION RATIO

Figure 2-1. Applied Parallelism Speed Curve

2-3

13 15

CG-147G. 16/32

Figure 2-2. Applied Parallelism Speed Curve

2 -4

E
4

c
I

C6-147G. 1G/33

100

90

80

70

60

50

40

:30

20

10

0
0 S 16 24 32 40 48

COhIPUTATION REDUCTION RATIO

Figure 2-3. Natural Parallelism Speed Curve

2-5

CG-147G. 1G/33

f
100,000

Figure 2-4. Natural Parallelism Storage Curve

2-6

C6-1476. 16/33

3. NEIGHBOR TO NEIGHBOR COMMUNICATIONS

3.1 NEIGHBOR COMMUNICATIONS FEATURES

This section will discuss the reasons for including neighbor communications and
Neightbor-to-neighbor communication is sonic considerations as to its mechanization.

a means for one cell to communicate with a restricted number of neighboring cells.
These communications paths are separate from the intercell bus.
always needed for global instructions (applied parallelism), the question arises,
should special communication paths be provided to neighboring cells, o r should all
communication go via the intercell bus?

Because the bus is

The advantages of neighbor-to-neighbor communication come from the problems
of using the bus and the fact that certain computations may be placed with a geometric
relationship (matrix and vector manipulations, etc.) that may efficientl-y utilize
neighbor communications.
to use the bus, how long the cell may use the bus, and how control is to be passed
from one cell to another. A controller cell must have means of controlling transmis-
tion priorities.
remains that there will always be an overhead in software and storage. To address
any word in a group requires 14 bits; thus to send a 16-bit data word requires 14 bits
of storage to hold the destination address.
is required. Adding words of program to control the transmission will require addi-
tional words of storage.

The intercell bus requires control as to which cell gets

Even if some of this control can be done by hardware, the fact

Thus for a word of data, a word of address

The time delay in transmitting via the intercell bus will depend upon the bus
design and how long it takes to establish control. If the bus is 8 data bits wide, for
example, about G clock times are required to transmit a single word. When many
words are transmitted in a single message, the clock times per word will approach
2 (one clock time per 8 bits). A detailed discussion of how communication is carried
out on the bus may be found in Section 6.

The time delay in transmitting is seen to be a problem, especially when few
words are transmitted. A more serious problem is the delay in obtaining control of
the intercell bus. The time delay between the time a cell needs the intercell bus and the
time a cell actually gets control of the bus is called the request delay. The longest
delay will occur when all the other cells have transmissions to make and the requesting
cell must wait its turn, The shortest time can be almost zero. Somehwere between
these two times will be the average request time delay, This delay is variable,
unknown, and could be very large.
the unknown times could make the programming difficult. In many cases where data
has to be passed to neighboring cells the timing is critical, such as in the navigation
and guidance routines. It should be noted that the more applied parallelism that is
being utilized, the longer the request delay. Since this may mean that more cells are
involved in the neighbor communications; if they all had to be serviced over the inter-
cell bus, the average request delay can be very large.

For any program where the timing is critical,

3-1

It is of coursc possiblc to do without neighbor communications providing one
docs not run into n time problem and cannot complete the computations in the allotted
time.
the intercell bus where small amounts of data have to be passed between neighbors as
in the use of applied parallelism.

Howevcr, as notcd above, it wwld provc very inefficient and difficult to use

To improve the system, neighbor-to-neighbor communication is needed. The
system implemented must providc the following advantages :

1. Low overhead (no more than one instruction to execute a data transfer)

2. High reliability

3. Known times to implement a transfer

4. Adaptable to reconfiguration

The disadvantages to including neighbor communications are two: (1) additional
connections are required to each cell, and (2) reconfiguration is more difficult.
number of connections required per cell increase by four; while this is not a large
increase, it does of course provide more failure points.
appears to be that of reconfiguration since now the organization is spatially oriented.
One approach to this problem is to require the programs to be set up using small
independent se t s of cells s o that one may pack the sets of programs around a number
of failed cells in a group.
phases of the study.

The

The most serious disadvantage

This problem will require further investigation in later

While a firm answer as to whether o r not neighbor communications are required
cannot be given at this time, the advantages in including it appear to outweigh the
disadvantages that may be encountered, In addition, inclusion of the neighbor com-
munications provides an organization with increased capabilities (notably speed) s o
that it may be applicable to a wider variety of applications (for example a high speed
video data reduction problem).

3 . 2 IMPLEMENTING NEIGHBOR-TO-NEIGHBOR COMMUNICATION

It is seen above that any method proposed must have advantages over and above
the intercell communication bus method. A method is proposed here that has these
advantages. The functional operation is described here. One cell will pass a word of
data to a neighbor cell. The sending cell, called here CO, will be executing a program
PO. The receiving cell (Cl) will be executing a program (Pl) that requires the word
of data contained in CO.

The program PO will place the word in one of its accumulator regis ters and
set a flag associated with that register.
to be sent. The X setting is
the normal state of the flag and indicates that the register contents are for the use of
cell 0 only. Unless an instruction is executed to change the flag state, the regis ters
can only be used by cell 0; the flag will always be X. If the flag is set by an instruc-
tion to N , the North cell is to receive the register contents.
S, E , o r W, the South, East, or W e s t neighbor can receive the data.

This flag will indicate to whom the data is
Thus the flag can be set to 5 states: N, C, E, W, or X.

By sett ing the flag to

3 -2

OP CODE

R - Is the accumulator register into which the results will be
loaded.
some instructions,

This accumulator may also furnish an operand for

R C

C - Is the relative location of the neighbor cell (N, S, E , W) which
will have a register with the proper flag.

The execution of this instruction will cause cell C1 to request from COa word of data.
If CO has a register with the proper flag, CO will send C1 the data word. Each cell
contains a buffer register (serial line used between cells); thus the transfer will not
destroy any accumulator contents. After the transfer is complete, cell C1 will per-
form the operation specified by the OP Code, using the transferred word as one of
the operands.

After a data word has been transferred the register flag in CO is reset to X.
By executing an instruction, the cell can test its flags. In this way, a cell can verify
that the neighbor cell called for and was sent the data. This flag test may provide a
means of detecting a malfunctioning cell.

Several special cases are outlined below. The descriptions below may be changed
as the system is studied further. Actual programming of some sample problems may
show ways of improving the system.

If two accumulator registers a re set to the same flag value, the lower numbered
accumulator will be transferred first. Only one datum will be transferred at any one
t ime for any single instruction execution.

CO may attempt to alter the accumulator contents before a neighbor cell has
requested and received its data word from cell CO.
be set (via an instruction) to: (1) wait until C1 receives the data, (2) interrupt to some
special e r r o r routine, or (3) ignore the flag and use the accumulator anyway. Which
options are implemented will depend upon further study.

The control circuits in CO can

The hardware needed to implement this neighbor-to-neighbor communication
scheme consists of a buffer register and control circuitry.
diagram of the hardware.
hardware will set the flag flip-flops associated with the accumulator to the proper
state. The control circuitry will be set to a state to expect a request.

Figure 3-1 shows a block
Upon execution of an instruction flagging an accumulator the

Upon execution of an instruction requesting a word from a neighbor, the control
in cell C 1 will select the proper line and send a request to that cell. If cell CO does
not have any flag set for this neighbor, the request will be rejected. If cell CO has

3 -3

CG-1476.16/33

3 -4

Fi
I

m

L.

C6-1476.16/33

ai accumulator flagged, the accumulator contents will be transferred in parallel to the
buffcr rcgistcr in CO. The accumulator flag is set to X. A bit-by-bit ser ia l transfer
will move thc bits from CO to thc buffer register in C1. The filled buffer register in
C1 will bc used as an operand.

Additional hardware could be added to increase speed. One buffer register is
proposed, because this rcgister must have serial shift capability. An additional
buffer register would allow simultaneous processing, transmitting, and receiving.
However, unless high-speed operation were required, the minimum hardware described
above would be assumed.

One aspect of the control circuit should be mentioned here. A single line between
any pair of cells gives the highest reliability because of the least number of connec-
tions.
each other at the same time. One method of control is to have the cells with an even
address make requests at one time, and cells with an odd address make requests
during alternate times. The address assignment is done by the controller cell via the
group bus. By assigning cell addresses in a checkerboard pattern, every evenly
addressed cell will have four odd addressed neighbors. This problem of neighbor-to-
neighbor control will be studied more in the future.
that can be compensated for will need to be determined.

The only problem comes about when two cells attempt to request data from

The amount of clock time skew

3 . 3 SUMMARY

The proposed scheme provides one instruction to send out a word, and one
instruction in the receiving cell to pick up the data and operate on it.
one additional instruction compared to a sequential program is therefore required.

A total of only

The high reliability is provided by having a single wire between any two cells.
The flag allows a cell to test the status of a data word regarding whether it was set
up and whether a request was made for the datum. Thus a malfunctioning cell that
never picks up a datum will be detected by a neighbor cell who expected this cell to
request the datum before some given time. The malfunctioning cell will have a low
probability of causing neighboring cells programs to "hang up".

A known maximum time to transmit a word will be provided by knowing the
worst case amongst the 5 cells.
the programs in all the cells, there will be no problem in timing the programs.

Since the assembler o r compiler software will know

3-5/3-6

CG-147G.lG/3.3

4. I NPUTlOUTPUT

4 . 1 INPUT/OUTPUT OPERATION

This section of thc report discusses the operation of the input/output system in
the DAMP Computcr. Input/output is handled by the hierarchical structure shown in
Figure 4-1. This figure shows that the interface to the computer consists of serial
and parallel digital lines. The conditioners C1 through CN each have a number of
sensoi-s connected to them. The sensors provide a variety of signals to the condi-
tioners and the conditioners, in turn, accept these signals and provide a standard
digital interface to the computer. Some devices contain their own conditioner circuitry
and a r e connected directly into the computer; these devices will generally be connected
in a full word parallel format. The bulk storage memory unit will be one of these
devices: other parallel devices may include items such as buffers for video sensor
data, etc..

The 1/0 structure described above was chosen over a completely centralized
1/0 structure which would absorb the conditioners into the computer and have the
sensors interface directly with the computer for the reasons given below:

1. A completely centralized 1/0 structure is generally used to gain a more
efficient hardware utilization by the consolidation of common signal condi-
tioning functions. In this computer, reconfiguration is possible around a
number of failures (down to the cell level). Since some of the I/O signals
a r e connected directly into the cells as will be explained la ter , reconfigura-
tion around a number of failures now makes a completely centralized 1/0
structure inefficient.
required to have the capability for interfacing directly with any of the
sensors,
ware and not provide an overall hardware savings.

This is due to the fact that all the cells would be

This approach would result in a large amount of redundant hard-

2. The conditioner structure is easily able to adapt to a change in sensors,
addition of sensors, or improvements in the sensor design. All that is
necessary is to add a conditioner or replace one that is already there;
whereas in the completely centralized 1/0 structure there is a need to
redesign the cells and replace the entire computer with new chips.

3 . The conditioner 1/0 structure also provides ease of adapting the computer
system to various vehicles between missions and within missions such as a
command module and a lander module of a Mars Lander Mission,
vehicles will have significantly different sensors.
tioner structure will provide the ability to use exactly the same basic com-
puter with only the need to change the appropriate conditioners in each
vehicle.

These
As a result the condi-

Many of the techniques that will be used in the M a r s Lander Mission for handling
guidance and control, status monitoring, and scientific. data have been established;
however, there will certainly be many new developments.
be used in such a mission are presently not well defined, especially in the area of
scientific experiments. This of course means that the conditioners also cannot be

As a result the sensors to

4-1

Figure 4-1. 1/0 Structure

well defined since their primary task is to generate control sequences, ca r ry out
analog to digital conversion, etc, for the sensors. However, certain general proper-
ties of the programs necessary to operate upon and handle the data f rom the sensors
can be defined.
will be used to obtain a first approximation to the operation of the 1/0 system.

These properties, typical of a wide range of spacecraft programs,

The method in which the 1/0 ties into the block called the computer in Figure 4-3
will now be developed, A discussion of the possible methods of handling the 1/0
internally will be given first and then further details wil l be given on the selected
method.

4 .1 .1 With the Intergroup Bus

Figure 4-2 shows the structure of the computer using an intergroup input/output
scheme, The intergroup bus actually consists of two redundant half word paraIleI
busses. Groups in the computer organization use these busses for communications
amongst themselves, therefore the 1/0 devices attached to the busses will appear as
groups functionally as far as the computer organization is concerned. The conditioners
wil l transmit serial data to the computer; therefore, a conversion from serial to
parallel is required before they get on the intergroup bus.
the blocks labeled 1/0 Cell in Figure 4-2.
this figure, one to each of the intergroup busses, this connection provides the recon-
figuration flexibility required.

This is accomplished in
Two of these 1/0 Cells a r e shown in

Conditioners handling data from critical sensors are

4-2

.-

.
0 PARAI,LEL

DEVICES

I
I
I
1
1
1
I
I
I
r
I
I
1
I
I
I
I
I
I

n (;KOI'FJ 4

Figure 4-2. Intergroup Bus 1/0 Scheme

duplicated and connected redundantly into each of the 1/0 Cells. Therefore, i f a
failure occurs in the bus, 1/0 cell, or conditioner, the other conditioner - 1/0 Cell -
bus connection can be used as a backup,

As noted above, sensors supplying critical data are connected to both 1/0
Cells; the non-critical sensors such as experiment data will be connected to only one
of the 1/0 Cells, Two alternatives a r e present here: (1) to have all the non-critical
sensors connected to one 1/0 Cell , o r (2) to divide the non-critical sensors between
the two 1/0 zells; these two schemes are shown in Figure 4-3. It should be kept in
mind that Figure 4-3 shows only the sensor connected in a serial manner through
conditioners to the 1/0 cells, there a re also the parallel sensors which connect
directly onto the bus. Each of the two schemes results in a different operation of the
1/0 system in the computer.

The first scheme where all the non-critical sensors a r e connected to one 1/0
cell results in using Bus 1 primarily and Bus 2 serves only as a backup in case of
failure of Bus 1, 1 /0 Cell 1, etc. This is due to the fact that the only 1/0 connections
to Bus 2 are redundant connections from the critical sensors.
both busses must be used since the non-critical sensors are divided between the two
busses.
when compared to the second scheme. However, note that in case of failure and
reconfiguration the first scheme will be able to offer a full reconfiguration since
either bus can handle the total 1/0 requirement,
the communication rates required on the bus introduces a new executive method of
handling the I/O. Since the 1/0 control and data a r e now divided onto two separate
busses, the executive in charge of 1/0 has the additional task of scheduling and

With the second scheme

The first scheme requires a higher communication rate capability on the bus

The second scheme besides reducing

4-3

C(i-147G. 1G/33

r 1

a (:ELL 1

\

I- - NON -(:fUTI(:AL
SEN SOKS

IJ

)-PARALLEL)-SERIAL I

4-1 22

IJ
I+

NON -(:FUTI(:AL
SENSORS

Figure 4-3. Two Methods of Intergroup Bus 1/0

4-4

-. I
I
I
I
I
s
1
I
1
1
I
1
I
I
I
1
I
1
1

i

CG-147G. 1G/33

iiitcrlcaving I/O into thc groups and avoiding conflicts of simultancous 1/0 on the two
busses into one group. Of course thc scheme with two busses also offers more flexi-
bility in handling the 1/0 from an cxccutive viewpoint since it is possible to handle
periodic high priority on one bus and background type of 1/0 on the other bus, etc.

It should be noted here that thc 1/0 cells are identical to the cells used in the
groups in the distributed processor.
niadc through the cell and not a group switch as is the case in the groups. The serial
connection to the conditioners is mechanized with the neighbor communication line.
It should be noted that it is possible to use each of the four neighbor lines of a cell
to sets of conditioners; this could be done to increase the communication rate capa-
bility to the conditioncrs (serial lines) if this became a bottleneck problem.

The connections to the bus are now directly

The cell contains processing and storage ability and can therefore function very
wcll as m i 1/0 processor since it has general purpose computer capability. Memory
in the cell can be used to store programs for inputting/outputting data, some of these
programs may be permanent and some may be loaded into the 1/0 cell by the executive
group, The memory may also be used to s tore data, thereby acting as a buffer device.

4 .1 .2 With the Intercell Bus

In Figure 4-4 the 1/0 concept introduced above is extended to the intercell bus.
The 1/0 scheme is quite similar to that given above and only the differences will be
pointed out here. Only one bus is required in the group for the intercell bus, whereas
two a r e required for the intergroup bus; therefore, only one 1/0 :ell is shown in the
figure, The sensors connected to the 1/0 cell may be critical sensors, non-critical
sensors , or a combination of the two. Redundant inputs of critical sensors would be
connected to another group, thereby providing the reconfiguration capability required
if a group failed. The 1/0 cell is physically the same chip as the other cells in the
group. It is connected on the cell bus just as the other cells a re ; however, its
neighbor communication lines are not used with neighboring cells but for communica-
tion to the 1/0 conditioners. The same comments apply with regards using all four
neighbor lines for 1/0 conditioner connections.

This approach has a communication advantage over the previous one in that the

It also does not require the overall o r

The disacivantage with the

intergroup bus now is not tied up with all the 1/0 data since the data is now fed
directly into the group where it is being used.
intergroup bus executive to be concerned with handling and scheduling the I/O; it is
simply handled by the executive directly in a group.
approach just presented is that the 1/0 cells in Figure 4-4 are somewhat specialized in
comparison to the other cells in the group since the neighbor lines of the 1/0 cell are
not connected to neighboring cells, This then makes reconfiguration difficult i f the
1/0 Cell in the group should fail, With this approach it is also difficult to handle data
which may be required by any o r all the groups, e. g . , data from the bulk storage
device.
group may be required to transmit data from such devices to other groups via the
inter-group bus. This obviously can place quite a burden on an intercell bus.

If it is not possible to connect such devices to more than one group then a

The logical extension of the two approaches thus far discussed would be a combi-
nation of the two: zonnections to the cell bus as presented above and connections to the
group bus similar to that discussed previously. There are many possibilities open
here. One scheme may be to connect noncritical sensors and one of the inputs from

4-5

CG-1476.16/33

TO INTER-
(;KOIIP HllS

INTER (:ELL HlfS

ROUP

I '
I ' 1q-t U

I . 1 - - - - - - - - d

Figure 4-4. Intercell Bus I/O

?'IO N ERS

SENSORS

critical sensors directly to groups and the other input from critical sensors and
devices such as the bulk s tore directly to the intergroup bus. An alternative may be
to connect the critical sensors directly to different groups; there are numerous possi-
bilities here, each with certain advantages and disadvantages.

4.1.3 With the Cells Directly and the Communication Busses

Another scheme considered and the one selected is to provide connections
directly to the cells in the groups for 1/0 and also connections to all busses in the
system, This 1/0 approach is shown i n Figure 4-5.

I t should be recalled that with the previous 1/0 approaches of communicating to
the busses; a cell had to be provided for connecting the serial conditioners into the
system (I/O Cell). This cell was identical to the other cells in the system.
i t was specialized in that it was not connected in the regular pattern (array) of cells
in the groups, Therefore, since the 1/0 cell was specialized it could not be replaced
by the other cells in case of failure, The selected approach requires a separate lead
to be brought out from each of the cells in the groups to an 1/0 connection panel; this
is similar to another neighbor communication lead.
capability for handling I/O. Connections from the busses are brought out to the panel
also, This scheme requires no additional o r specialized 1/0 hardware in the system.
Al l that is required is to provide an additional connection from each of the cells in the
system (the 1/0 hardware can principally be thought of as connections here). Since
the 1/0 is handled by cells directly in the group, reconfiguration around failures in
terms of 1/0 is relatively straight forward. This is due to the fact that any of the

However,

Every cell therefore has the

4- 6

CG-147G. 1G/33

INTER(; KOlIP BUS

FROhl
CELL
BUSSES

1

Figure 4-5. Selected 1/0 Approach

4-7

..

CG-147G. 1G/33

cells can handlc 1/0 functions,
thc 1 /0 panel.
of an I/O cell.

It may be necessary to unplug - plug conncctors on
However, a group will not neccssarily then be lost due to the failure

Another possibility along thcse lines that was given some thought, was that of
using one of the four neighbor lcads for 1/0 as shown in Figure 4-6.
conncctions are madc to half of the neighbor lines and brought out to an 1/0 panel as
i n Figure 4-5. This eliminates the extra connection to cach cell as described in
Figure 4-5.

In this approach

Some of the neighbor lines are now shared between neighboring cells and 11'0
conditioners. The problcm that a r i ses in doing this is that of avoiding conflicts of
usage on the common line. If only a single line is used (bidirectional channel) for
ncighbor communications, then an additional connection must be added to the cells
to se rve as a request/acknowledge line for use of the common line between 1/0 and
ncighbors. This is required since a reques t/acknowledge approach must be used --
otherwise, communications over the common line would be random and meaningless.
It is impossible to use only one line with a request/acknowledge approach, since the
request signal from one source would naturally interfere with any established com-
munications by the other source sharing the line. It should be noted that since it is
now required to add the request line, one might just as well use this extra connection
for a separate I/O line as in Figure 4-5.

If two unidirectional lines a r e used to mechanize the neighbor communications,
the situation is somewhat different. A request/acknowledge type of approach is still
required since there still would be possibilities of simultaneous usage of the communi-
cation lines (although not as probable as with one line). With a request/acknowledge
approach and unidirectional lines it is possible not to require any additional lines
since the scheme can be mechanized on the two unidirectional neighbor lines.
scheme would require using one of the lines for notification purposes to inhibit a
request from the non using source. If two requests occurred simultaneously the
proper acknowledge signal can be inhibited.

This

It is thus seen that i f bidirectional lines a r e used for the neighbor communication
lines, no advantage results in tying the 1/0 directly into the neighbor lines. However,
if unidirectional lines are used, this approach could save two connections per cell,

Further explanation of the selected approach shown in Figure 4-5 will be given
below.
line shown in this figure is similar to an additional neighbor line added on to a cell.
Each of the 1/0 lines a re brought out to the 1/0 panel as shown in Figure 4-5. This
results in an increase in the number of connections in the system, which, of course,
degrades the reliability of the system.
connections actually used is not as great as that provided (approximately 80), since
only a small portion of the 1/0 connections to the cells will be used (approximately l o) ,
as will be pointed out below.
number of extra connections in the system,

Each cell contains communication lines as shown in Figure 4-7. The 1/0

However the actual increase in terms of

Therefore, this scheme actually results in only a small

As shown in Figure 4-5, a number of conditioners, C1 --- CN, are connected
This connection hierarchy is the same as described in the
Connections are brought out from both the intercell busses

to a cell's (Ci) 1/0 line.
preceeding approaches.

4- 8

C6-1476.16/33

I 1

I

I/O

Figure 4-6. 1/0 Using Neighbor Lines

and the intergroup bus to the 1/0 panel, These are parallel connections and the type
of devices that will be connected here are, e. g . , the bulk storage unit, special buffers
for scientific experiment data, high rate experiment sensors with large quantities of
data, etc.

As mentioned previously, only a small number of the cell 1/0 connections will
be utilized. There are a number of reasons for taking this approach. If one tended
to use many of the cell 1/0 lines then many cells would be associated with particular
conditioners or sensors. Con-
sider reconfiguration due to phase changes for example from midcourse cruise to
midcourse velocity correction; if the sensors are closely associated with particular
cells one is now constrained as to where new programs may be placed in the system.
It would be undesirable to have the 1/0 information coming into many different cells
which may not even need this information and then have to be placed on the inter cell
bus to cells that require it. It may be necessary to unplug-plug sensors to affect a
reconfiguration in this manner.

This places a severe restriction on reconfiguration.

Another disadvantage with this approach is that the reconfiguration of the system
around cell failures is difficult. While the probability of a single cell failing may be
quite low, there are many cells in the system (approximately 80).
1/0 connections to many cells the probability of having a failure now associated with
1/0 signals is increased. If a cell fails that is being used with an 1/0 connection and
the conditioner is connected only to this one cell, then this conditioner has to be
unplugged-plugged to affect reconfiguration. The reconfiguration cannot be handled
by software alone,

Therefore, by using

4- 9

u
E (1 ELL

s N

w N

Figure 4-7. Communications Lines to a Cell

The advantage in using more connections is that more of the I/O-can now be
brought into cells that will use the data directly, thereby reducing the amount of 1/0
that has to be handled over the busses or the neighbor lines. In order to provide the
recoilfiguration flexibility, the approach of limiting the number of 1/0 connections to
cells was taken.

One o r more cells per group will be connected to 1/0 conditioners as in Fig-
ure 4-5 (typically 2 or 3 cells). The 1/0 control in the group may be handled in a
number of ways. One approach is to have the 1/0 handled by both the individual cells
and the cells connected to the conditioners. The individual cells will have small 1/0
routines for calling and accepting 1/0 data from the cells acting as 1/0 cells.
1/0 cells will contain routines for servicing requests from other cells and for generat-
ing requests to other cells; they may also contain autonomous routines such as for 1/0
of periodic sensor data.
buffering of 1/0 data.

The

The 1/0 cells will also have some memory available for

Other possibilities include having the controller cell in the group supervise the
1/0 programs and/or also contain a good portion of 1/0 routines within itself. This
may be useful for 1/0 data intended for more than one cell. It is also possible for
the 1/0 cell to use its neighbor lines to pass I/O data to its four neighbors, thereby
eliminating the use of the bus for certain 1/0 data; this could prove useful for pre-
cisely periodic sensor data.
1/0 system; further details as to the operation of the 1/0 zells will be gone into in
later phases of the study when the executive design is attempted.

The intent here is to present the general concept of the

As mentioned previously, connections a r e provided to the busses. Devices
connected to the intergroup bus such as the bulk storage unit will effectively function
as groups. The overall executive will control the communication (I/O) between such
devices and the groups in the system. Devices connected to the intercell bus will
effectively function as cells; the controller cell in the group may control 1/0 to such
devices and/or the individual cells may also provide requests for 1/0 action to such
devices,

4-10

Cci-1476. 1G/33

One other point should bc mcntioned herc, critical sensors will be connected to
I/O cclls in two different groups. This will provide for the required reconfiguration
capability i f the interccll bus o r I/O cell that a critical conditioner is connected to
should fail.

4 . 2 1/0 MECHANIZATION

A preliminary design of the 1/0 system was completed to get an estimate of the
1/0 mechanization requirements. This section presents a summary of this
investigation.

The 1/0 cells are to car ry out their communications (both in and out) with the
conditioners over a siiiglc line connected between the 1/0 cell and all conditioners
that are to communicate with the cell. The 1/0 cell has control over this line and
operatcs under control of an internally stored program.

The operation of the 1/0 system will be explaincd below. Assume that the 1/0
cell desires to output a set of words to a conditioner.
executed :

The following instruction is

I/O I Address

The address specified in the 1/0 instruction is used to access the 1/0 control word:

bits: 1 7 8

1 Rd/Write 1 Conditione r/Device 1 Word Count 1
This control word tells whether this is t o be an input o r an output operation (Rd/
Write), which conditioner and device the operation is to be carried out with, and the
number of words to be communicated, Provision is made to transmit up to 256 words.
If this is more than needed and 128 proves adequate, one can substitute an indirect
bit in place of one of the word count bits; this indirect bit could be used to aid in
locating the address of the first word to be communicated as will be explained below.

Seven bits have been allotted for identification of the conditioner/devices. This
provides the capability of handling up to 128 devices per 1/0 cell.
proves too few devices, one may possibly use one of the word count bits for conditioner/
device identification.
ditioners and 16 devices pe r 1/0 cell.

Again, if this

A preliminary feeling for the breakdown is to provide for 8 con-

The sequence of events occurring in executing the 1/0 operation will now be
explained. A combination of hardware and software will be used and the relative
usage of each to accomplish the instruction may be varied; the description given is
for a preliminary description only.

Two possibilities are available for locating the first word in the set of words
to be transmitted. The word may be located in the location immediately following the
control word described above, or it may be located indirectly by using the address

4-11

CG-147G.lG/33 x

contained in this location to specify the location of the first word. Anothcr possibility
is to use an indirect bit in thc control word, thereby offering the potential of providing
both possibilities described above.

Sync Cont/data Cond/Device Spare

The following sequence of operations are carried out to execute the 1/0
ope ration :

Rd/Write

- Fetch control word

- Place proper bits in buffer register

- Shift out buffer register over 1/0 line

- Place word count in a certain location in memory

- Fetch address in location following control word

- Place address in a certain index/bank register

- Transfer to the input or output (depending on rd/write bit) software routine

The address of the input/output routine could be hardwired or previously setup

A preliminary feeling is that the
in a certain index/bank register. A s noted above hardware and/or software may be
used to execute the 1/0 operation described above,
above may be carried out most efficiently by hardware.

The buffer register now contains the following information in it:

The buffer register is seen to be 18 bits in length.
control bits must be added to utilize only one line in the 1/0 mechanization; these
are the sync and control/data bits.
synchronize the conditioners. The control/data bit identifies the following 16 bits
as either a control word or a data word. The control word shown for the conditioners
uses 7 bits for the conditioner/device identification--8 bits are not used (actually the
word count may be placed in here if this is deemed useful to the conditioners) and
one bit fo r identification of the operation as input or output.

This is due to the fact that two

The sync bit is always a one and is used to

The conditioners a r e clocked with the 1/0 cell and utilize the sync bit to set a
counter. Upon counting to 18 the conditioners reset and are ready for the next trans-
mitted word. Upon detection of a word identified as a control word, each conditioner
will examine the conditioner/device bits to determine if the control word is for this
particular conditioner. If it is then this conditioner will lock on to use the 1/0 line
for receiving or transmitting the data that follows.

4-12

A preliminary description of the output routine will be given below. This routine
\vi11 be described as R. software approach. It should be kept in mind that hardware may
be substitutcd to achieve a faster execution if this is found to be necessary.

output routine :

- Load Accum. with f i rs t word (address specified by previously setup index/
bank reg.)

- Transfer Accum. to Buffer Register (with this the buffer is automatically
started shifting out)

- Load Accum. with word count

- Subtract 1

- Test and transfer on 0

- Modify index/bank reg. for 1st instruction

- Jump to some location back in program (location set before 1/0 instruction
executed)

- Jump to master 1/0 routine

To get back to the output routine (when the buffer register is shifted out), an interrupt
is sent from a counter associated with the buffer register; this transfers the program
to the output routine (location of this routine could be a hardwired location o r previous-
ly loaded in an index/bank register) .

Input Routine :

- Transfer Buffer to Accumulator

- Store Accum. in first word (location setup by index/bank reg)

- Load Accum. with word count

- Subtract 1

- Test and transfer on 0

- Modify index/bank register used in 2nd instr.

- Jump to some location back in program

- Jump to master 1/0 routine

4-13

CG-1476.16/33

‘1’0 get back to the input routinc (when the buffer register is full again), an interrupt is
sent from the same counter associated with the buffer register (the 1/0 instruction
sets n mode flip flop to determine if the input o r output routine is to be entered).

A s noted previously this description is preliminary, further details will be
examined in later phases of the study.

The above description results in an 1/0 system completely under control of the
1/0 cell,
from the 1/0 cell, To facilitate requests from devices for 1/0 operations (for
esnmple a request from the astronauts panel o r a buffer holding experiment data), it
is possible to insert in each (or possibly only several) conditioners a request regis ter
that may be sampled periodically by an input operation by the 1/0 cell. Then the
I /O cell may decide how to handle the requests, i f any.

The conditioners cannot interrupt o r request 1/0 operation independently

Another possibility is to add a separate request line as shown i n Figure 4-8.

If no requests are present in the conditioner, the connection will
This line passes serially through the conditioners.
out a request pulse.
be successively completed to the last conditioner where the request line will be
grounded, This, then, signifies no request is present. The first conditioner with a
request that receives the pulse will not complete the circuit. The 1/0 cell recogniz-
ing this knows a request is present but not from which conditioner. The conditioner
with the request that received the pulse will now send a control word to the 1/0 cell
indicating what 1/0 action is desired with the proper identification.

Periodically, the .I/O cell sends

The advantage with this scheme is that the conditioners may be sampled very
quickly and easily (minimum software in the I/O cell) by the I/O cell to handle
requests by the devices for 1/0 operation. Its disadvantage is that it costs an extra
connection.
always revert back to the original approach without this scheme.

Note however that if a failure occurred in this connection one could

4-14

Figure 4-8. Request 1/0 System .

4-15/4-16

CG-147Ci.lG/33

5. GROUP ARCHITECTURE

5.1 INTRODUCTION

Many different computer systems have been studied during the course of this
study. A description of these systems appeared in Section 5 of the previous quarterly
report (ref. 1). The distributed array memory and processor system w a s found to be
the most useful f o r the general computations needed on future spaceflights. This
distributed system, shown in Figure 1-1, requires a unique architecture to make a
capable and reliable system.

Architecture means the combining of software and hardware features to make a
balanced useful system that will meet the requirements set upon the computing system.
Some of the considerations, such as memory size and approximate processor capa-
bility, are based upon the ground rule to build a cell upon a single wafer. This section
describing the group architecture will describe the features desirable to unify the cells
into a working group.

The distributed processor system consists of groups, which are made up of
cells,
and the controller cell can send global instructions to cells, the group is the funda-
mental unit of the computing system. The software studies to date indicate the
compiler must be aware of the cell memory contents, the cell bus loading, and the
controller cell capabilities when compiling programs.
architectural studies were applied to the group.

Because the cells in a group are connected by neighbor communication lines,

Fo r these reasons the

The features and characteristics of a group are described here, All these
features may not be needed; future studies will determine the useful features to be
retained, and the features of little value to be discarded.

5.2 CELL STATES

A fundamental ground rule in this study has been to make all cells of identical
hardware. When the cells are operating, the cells function in one of seven states,
shown in Table 5-1. Although all the cells a r e identical in hardware, a cell always
exists functionally in one of seven different and mutually exclusive states.

A permanently failed cell is placed in state 1 by a combination of software and
hardware controls. These cells will not be used again. The reconfiguration studies
will determine the software and hardware required to diagnose and shut down a
malfunctioning cell.

State 2 is the power saving state for cells that a r e not needed presently. If
standby power is applied to the level register and the cell bus gates, the main power
to this cell may be turned on by the controller cell and switched to another state.
The controller cell then may reload the cell 's memory.
switched off, a special res tar t procedure, using the neighbor communication lines ,
must be used. This problem will be studied as par t of the reconfiguration studies.

If all the power has been

5- 1

C6-1476.16/33

Table 5-1. Cell States

-7 - _ ~ _ _ _

1.

2.

3. Independent

4.

5. Dependent under local control

6. Dependent in wait state

7. Controller cell

Pernianently failed - power off

Shut down - power saving state

Dependent under global control (Global State)

-

Independent cells a r e functionally similar to a conventional computer. These
cells fetch all instructions and operands from their memories.
independent state stays in this state until the controller cell sends a command on the
intercell bus with a cell address equal to the contents of the cell 's identification (ID)
register. Each independent cell
must be addressed individually,
a r e not amenable to global processing.

The cell that is in the

This command can cause this cell to change states.
The independent cells can process problems that

Dependent cells respond to global instructions and global level commands sent
out from the controller cell. A dependent cell exists in one of the states 4, 5 o r 6.
Which of the three depends upon the level of instructions being sent from the controller
cell and the cell 's level register contents. The concept of levels is described later
under &l identification.

A dependent cell in the global state (also called the active state) is receiving
instructions from the controller cell via the cell bus.

A dependent cell that is not at the proper level to receive global instructions can
This is the wait state. If the controller cell is idle and not execute instructions.

servicing certain dependent cells, other dependent cells may wait their turn for service.

A dependent cell, instead of waiting for the controller cell to send the instruc-
This is tions for its level, may fetch and execute instructions from its own memory.

the local control state.

The concept of having both independent cells and dependent cells in a computer
system is an important concept developed in this study. Other studies of similar com-
puter systems require all cells to be independent o r all dependent. With this improved
system, the system's problems may be solved most efficiently by using both indepen-
dent and dependent cells.

5 -2

I
I
8
I
I
8
I
B
I
t
I
I
I
I
8
8
I
1
I

I
1 :
8
I
I
I
I
I
8
t
8
8
I
I
8
8
I
I
1

C(i-1476.16/33

The use of local control by dependent cells means that the cell bus is not wasted
sending instructions when the instructions could be better stored in the cell 's memory.
With this feature, the cells can cfficiently use local programs to correct for bad data
aid handle exceptional conditions. The cell can enter the local control state, do some
processing, and later inform the controller cell of the situation.

The seventh state of a cell is the controller state. In this state, a cell may issue
global instructions and control the cell bus. The fundamental ground rule of making
all the cells of the same hardware allows any cell to become a controller cell. This
gives the advantage that the controller cell functions may be switched among several
cells.
in one cell.

Thus there is no requirement that all the executive and controller programs f i t

There i s only one controller cell in a group. The reason is the controller cell
controls the cell bus, and two cells cannot be allowed to issue conflicting commands.
Software and hardware interlocks wil l be used to insure only one controller cell is in a
gr 0 up .

The group switch, shown in Figure 1-1, is par t of the group although it is not a
The group switch, like a cell, has an ID register. cell. The group switch responds to

control words containing the proper ID bits. The group switch will perform the opera-
tion given in the control word (CW).
switch .

Thus the controller cell will operate the group

5 . 3 CELL IDENTIFICATION

The distributed computer system has a central source of instructions which are
sent to many cells. Instructions may be fetched from a cell's memory.
system divides the cells into eight groups, or levels. Each cell in a group has the
same level number. In addition, each cell is given an identifier, also known as the
cell address. Thus a cell has two "namest', a common first name (level) and a unique
las t name (identifier). This concept of having two names is important when discussing
the dependent and independent cells.

The DAMP

Independent cells use only one name, their identifier o r cell address. The level
(or f i r s t name) is not used, and, although present in a level register, has no meaning.

Dependent cells use two names. The controller cell may send out a first name
(level number) to all the dependent cells. All the dependent celis at this level will
respond.
respond.

If a last name (cell address) is sent, only the cell with this name will

5 -3

C6-1476.16/33

The instructions sent by the controller cell follow the name. The cells that
responded to the name will receive the instructions that follow the name.
assume a system with 7 cells as follows:

For example,

First Name Last Name Dependent Independent

JOE SCOTT
BOB ROSE
HELEN TRUMP
BOB MILLER
BOB JOHNSON
JOE SMITH
HELEN DAVIS

X

The controller cell sends the following instruction groups. The results a r e
esplained below.

JOE: Load X, Store Y, BOB: Load A, Add X, Subtract By Store Y,
HELEN: Load A, Store Y, ROSE: Add M y Add N, ., ,

Two cells (JOE) will Load X, Store Y. Three cells (BOB)
will execute the next four instructions. One cell will execute
the next two instructions,
cell and does not respond to first names.) The name ROSE
is a last name, thus only one cell will execute these
instruct ions.

(The cell TRUMP is an independent

5.4 SOURCE O F INSTRUCTIONS

The traditional computer has instructions stored in a memory which is always
available to the processor. The processor controls the instruction fetch sequence
by using the program counter, In most modern machines, the instructions are
located in a random access core memory, and the program counter is incremented to
fetch sequential instructions. A jump is performed by loading the program counter
with the address of the next desired instruction.

The independent cell receives all of its instructions from the cell 's memory,
The program counter is used to control the fetch of like the traditional computer.

instructions.

The dependent global cell gets its instructions from the controller cell. The
cells receive the instructions from the cell bus and then execute them. The control-
l e r cell precedes the instructions with a name. The level number (name) is contained
in a control word sent on the intercell bus. This control word is a prefix to a group
of instructions (including their modifiers). This prefix is the level of all instructions
until a new level prefix is sent o r other control instruction is sent.

5 -4

-~

I
I
1
I
1
I
1
1
1
I
I
I
I
I
I
1
1
I
I

I
I
I
8
1
I
8
8
1
8
1
8
1
I
8
1
I
I
I

C6-1476.16/33

Every dependent cell compares the level prefix sent
If the prefix level reEister contents contained in the cell.

by the controller cell to the
and the level regis ter con-

tents are different, the cell ignores all the instructions, data, etc. sent by the
controller cell, until a new level prefix (or other control word) is put on the bus.

An example is given in Figure 5-1. Remember that every cell is required to
esnminc every control word, but will not perform the control word operation if the
cell is at n different level, o r has the wrong ID (cell address).

Segment
Number

Figure 5-1. Bus Operation Example

: Control Byte (CB) All cells will examine this byte. If the cell matches
this CB, the cell will receive the control word.

: Control Word (CW) This word includes the CB, and defines an operation
to be performed by the cell. Often the CW consists of only a CB.

: Data, In this example, we shall assume that the Control Word specified
that instructions are contained here.

When segment 1 in the example occurs, all the cells in the system will examine
the CB. We will assume the CB is a type that specifies a level.
dependent cells at this level will be ready to receive the CW (segment 2) and are
automatically placed in the dependent active (global) state.
state will receive the CW (segment 2) and will receive the instructions and data
following (segment 3). No other cells will receive any instructions o r data
(segment 3) from the bus until the next CB occurs (segment 4 in the example).

Thus all the

These cells in the global

When segment 4 comes on the bus, all the cells will again examine the control
byte, In the example, it shall be assumed the CB specifies a different level,
following actions will occur:

The

Ln cells that were active, the C B at a new level will se t these cells to wait state,

In cells that were not active, and are at the new level indicated in the new CB
(segment 4), these cells will become active and wil l receive the data
(instructions) following (segment 5). All other cells are left unchanged.

5 -5

C(i-1476.16/33

Thus it can be seen that many sequences of global instructions may be sent to
ii any sets of cells at a very low overhead cost to switch between sets. The low over-
head is advantageous when many cells are at each level and short sequences of instruc-
tions a r e to be transmitted to each. Also the bus is used very efficiently.

To summarize, a dependent active (or global) cell is a cell that is receiving
global instructions and data. By definition, a global cell is at the same level as the
global instructions. Actually, the level is in the prefix CB, there is no level trans-
mitted with each instruction. The term "global instructions level" will refer to this
prefix, although the te rm is not exactly correct.

l'he dependent cell not receiving instructions from the inter-cell bus may fetch
This cell is in the dependent local control state. instructions from its own memory.

The controller cell always fetches instructions from its own memory. The
instructions destined to be executed by the dependent global cells a r e not executed by
the controller cell. All other instructions a r e executed by the controller cell and are
not sent to the global cells. This is explained further in the section describing the
controller cell instruction execution,

5.5 SOURCES O F ADDRESSES

The computer technology has developed over the years many ways of specifying
a memory address,
tion. Later, index registers were used to modify the instruction address.
banks were used to save instruction bits.
of determining the final (or effective) address that was used to a.ddress memory.

The ear ly machines had the operand address given in the instruc-
Memory

The traditional computer had several ways

The cells in the distributed processor computer also have several ways to specify
an address. All the ways will be described here , although some a r e not used by cells
in certain states.

The address may be specified by adding the instruction displacement and the
bank register (also known as a base register) . The bank register is 16 bits long.

Bank

+ 00.. . o I C 1
calculated address

This sum is called here the calculated address. If an index register is specified,
i t is also added.

5-6

C6-1476.16/33

Bank

I Index Register I
+ 00.. , 0 1 r I

1 I calculated address1

These two calculated addresses use the registers located in the cell.

Independent cells will obtain all the parameters that make up the address from

The bank and index register a r e always from the cell.
the cell itself; dependent global cells will obtain the displacement from the instruction
that was sent on the cell bus.

In addition to the calculated address, a new concept of a given address is used.
A given address is an address that is used instead of the calculated address.

A dependent global cell recognizes a given address by a special control instruc-
This special instruction is called a GC format instruc-

The format instruction is really an 8-bit byte sent f rom the controller cell to
tion received on the cell bus.
tion.
signal the global cells that a given address, in addition to the instruction, is to be sent
on the cell bus. The sequence is as follows.

Time Contents of Cel l Bus Length

GC Format-address is given (8 bits)
Instruction (16 bits)
Given address (16 bits)

subsequent instructions

The global cell normally expects to receive 16-bit instrwtions. However, this
normal sequence is altered by a format instruction. This instruction is a control byte
and tells the dependent global cells that something new has been added. In this case,
that a 16-bit address follows the next 16-bit instruction. The global cell will execute
the instruction using the given address instead of the calculated address. Thus the
controller cell may send an address to all the global cells instead of having the cells
calculate the address.

The independent cells (and the dependent cells under local control) may use the
format instruction.
memory and is fetched as any other instruction. After the format instruction is exe-
cuted, the processor knows the type of data contained in the following memory locations.
An example is given here.

In this case, the format instruction is located in the cell's

5-7

Location

START

+1

+2

C6-1476.16/33

Contents

Format GC Instruction-

Instruction

Given Address

address is given

Length

16 bits

16 bits

16 bits

subsequent instructions

Here, the instruction at START +1 is executed using the given address instead
of the calculated address. The use of the GC format instruction is called instruction
modification.
tion, but rather a respecification of the address.

The modification is usually not a change in the operation of the instruc-

5. G SOURCES OF DATA

The cell in the distributed processor computer system can obtain data from
many sources. Some sources a r e available to all cells irregardless of their state,
others are available only to cells in a particular state.

All cells have access to data stored in their memory.
has no division of memory into data areas, read-only areas, etc.
in a cell is available to the processor.

The present cell concepts
Thus any location

All cells may obtain data from their neighbors. Because the neighbor to neighbor
data t ransfer is independent of the cell state, the neighbor communication system is
described separately in Section 3 .

Cells may receive data from outside the group via the cells 1/0 line.
system is described in the section on Input/Output Operation (Section 4.1).

This

Cells may receive data from outside the group o r from other cells via
the inter cell bus. This system of a cell communicating directly with another cell
via the inter-cell bus is described in the section on the communication bus operation
(Section 6.2). By the same system, when one 77cell'7 is the group switch, a cell can
receive data from the outside world such as other groups and the bulk storage unit.

Dependent global cells may receive data from the controller cell. A format
instruction is used to indicate to the receiving cells that data is being transmitted in
addition to instructions. The format instruction is used like the GC format instruc-
tion described in the preceding section, Sources of Addresses.

5 -a

C(i-1476.16/33

A l(i-bit data word may be sent to global cells by sending the following sequence
on the inter-cell bus. The GC €ormat instruction is called a D16 format.

T im e Contents of Cel l Bus Length
I

Format - 16 bit data follows
Instruction
Data

8 bits
16 bits
16 bits

subsequent ins t ru c t ions

This format instruction indicates an instruction is followed by a data word of
1 G bits. The instruction is executed by the cell. The operand used, however, will
be the data word received from the inter-cell bus and not the data word usually
fetched from memory. More details concerning the operands and data a re given in
the section on instruction execution (Section 5. 7).

Having data sent by the controller cell means that the individual cells do not
each have to s tore constants,
an inefficient use of cell memory, whereas the controller cell has to store the constant
but once and send it out when it is needed. The constants a r e sent at the time they
a r e used; thus they need not be saved in the cells memory.

To have 20 cells all s tore pi, e , and other constants is

A 32-bit data word may be sent to dependent global cells, The GC format
instruction is now called a

-

D32 format.

Contents of Cell Bus

Format - 32 bit data follows
Instruction
Data

subsequent instructions

Length

8 bits
1 6 bits
32 bits

This is similar to the D16
performing its operation.

format, The instruction will use the 32-bit data word in

Another format instruction is called the I (for Immediate) format Here the
data is the displacement field in the instruction
be sent depends upon the length of the displacement field in the instruction.
I format is especially useful when loading registers with small values.
is received by a dependent global cell as shown on the next page.

Naturally, the magnitude that may
The

The I format

5 -9

Time I *
C6-1476.16/33

Contents of Cell Bus

Format-Immediate
Instruct ion

Length

8 bits
16 bits

subsequent instructions

For example, if the instruction is a Load Index Register 3, the displacement field of
the instruction, preceded by zeros, wil l be loaded into index register 3.

The last format instruction that concerns data is the DS format. This is a very
special format whose usefulness is yet to be determined. It was designed to rapidly
move data from the controller cell to a group of cells o r a cell. The sequence
received by a dependent cell is as follows:

The last format instruction that concerns data is the DS format. This is a very
special format whose usefulness is yet to be determined, It was designed to move
rapidly data from the controller cell to a group of cells o r a cell.
received by a dependent cell is as follows:

The sequence

Time Instruction and Data Length

GC format - DS
Instruction
address
data word 1
data word 2
data word 3

data word N
GC format-End of DS

8 bits
16 bits
16 bits
16 bits
16 bits
16 bits

16 bits
8 bits

The receiving cell will receive the DS format instruction. The instruction
following will be executed using the given address and the first data word,
address will be incremented by one, and the instruction will be repeated using the
second data word,
is received instead of a data word at N+1.
tion 4s a s tore or compare to memory type of instruction.

The given

The operation will continue until the GC format byte. End of DS,
The DS is seen to be useful if the instruc-

The above description of instruction modifiers to allow the controller cell to
send data to the dependent cells applies to dependent global cells. The instruction
modifiers may also be used by cells in other states. Of course, the format instruc-
tions must be stored in the cell's memory, and are not sent over the intercell bus.
Section 5. 7 describing the instruction execution should be consulted for more details.

I
8
u
8
I
8
8

I
8
I
I
I
I
I

5-10

C6-1476.16/33

An example of how GC format instructions can be stored in a cell 's memory and
used to modify instructions is given below.

Lo cat ion Contents

START GC Format-D1G data follows

+1 Instruction - Load Acc 1

+2 data word 1

+3 Instruction - Load Acc 2

+4

subsequent instructions

Length

16 bits

16 bits

16 bits

16 bits

The GC instruction at START indicates to the processor that the next instruction
is followed by a word of data.
lator 1 not with the contents of the memory location specified by the calculated address
but with data word 1 located at START +2. It is seen the GC is used here to respecify
the location of the data to be loaded into the accumulator.

The load accumulator 1 instruction will load accumu-

The instruction at START +3, because it is unmodified, is executed in a normal
in anne r .

MOST instructions may be modified by a GC format instruction. Table 5-3
gives a l ist of all the instruction types and how they a r e affected by modification.

5.7 EXECUTION O F INSTRUCTIONS

The instruction execution in the distributed processor system is a complex sub-
ject. The execution depends upon the state of the cells and upon where the addresses,
instructions and data a r e located.
small details, a general computer organization has been assumed.
principals discussed here will be the same no matter how the final hardware design
changes from the present concepts.

To simplify the explanation and to delete many
The general

The processor section of the computer is assumed to contain the program
counter, instruction decoding logic, adders and several registers,
a r e accumulators, index registers, and base registers,
located in an addressable section of the cells memory, o r they may not be addressable
by the programmer. The cell also contains an identification register and a level
register.

The registers
The registers may be

The instructions have been divided into several general categories (Table 5-2).
All the instructions in a category a r e executed in a similar manner.
a description fo r each instruction category for the different cell states.
summarizes the instruction execution.

There will be
Table 5-3

5-11

1.

2.

3.

4.

5.

6 .

7.

8.

9.

10.

11.

12.

LR

STR

OPR

RR

R

EXEC

COMP

SKIP

J U M P

cc

GC

IO

C6-1476.16/33

Table 5-2. Instruction Categories

Load Register from a memory location

Store Register into a memory location

An operation is performed between a register and a memory
location contents, the results a r e in a register.

An operation is performed between one register and another
register.

Single register operation, such as shift.

Execute an instruction in a memory location.

Compare the contents of a memory location (or register) with
a register. The results of the comparison a re saved in the
COMPARISON flip-flops.

Test the contents of a memory location (or register) with a
register or implied value. The result is true or false.

A new sequence of instruction is begun. The jump may be
combined with a test to make a conditional jump.

Controller Cell instruction. The instructions and commands
used by the controller cell, excluding Global Control
instructions.

Global Control instructions. These instructions control the
levels and dependent cell execution of global instructions.

Input-Output instructions. These instructions initiate and
control I/o operations.

5. 7 .1 Dependent Global Cell

A dependent cell may receive instructions, data, and commands from the cell
bus. The global cell, o r active cell, is receiving instructions and executing them as
they a re received; the level prefix placed before the instructions by the controller
cell is the same as the contents of the level register in the global cell.

Although the global cell receives instructions from the intercell bus, the
registers, addresses, and data are usually from the cell 's memory.
global cells wil l receive the same instruction, but all may use different addresses
and process different data. The exceptions a r e indicated by the use of a GC Format
modifier byte preceding the instruction. This concept was explained in the previous
sections .

Thus several

1. LR instructions are all instructions that fetch an operand from a memory
location and load the contents into a register. The address of the memory
location is calculated by adding the base register, index register (if one
is specified) and the displacement from the instruction. Only the displace-
ment is received on the intercell bus. The low-order nine bits are used to

5-12

C6-1476.16/33

5-13

C6-1476.16/33

5-14

CG-147G. 16/33

Table 5-4. GC Instructions

Level Control, sent by controller cell on intercell bus

level, G All dependent cells at this level go to global state.
Instructions follow.

level, L All dependent cells at this level go to local control.

level, W All dependent cells at this level go to wait state.

level, R All dependent cells a t this level reply on intercell bus
with constant.

level, IND All dependent cells at this level go to the independent
state.

Forinat, used by all cells

A Given address follows the next instruction,

D16 A data word of 16 bits follows the next instruction.

D32 A data word of 32 bits follows the next instruction.

A, D16 Both data word of 16 bits and given address follow the
next instruction. The address comes first.

A, D32 Same as A, D16 only the data word is 32 bits long.

I The displacement field of the instruction i s the data.

Count, DS The number of 16 bit words given in the count field
follow the given address after the instruction.

End of DS Generated by the controller cell processor to indicate
the end of the DS data.

State Control, used by independent cells

level, DEP The cell is made dependent, and se t to the wait state.
The level register is set to the value specified.

level, IND The state is not changed, only the level register is set.

5-15

C6-1476.16/33

address memory; the remaining seven high-order bits are ignored. Of
course, if the memory in a cell is greater than 512 words, more bits
would be used, The operand is fetched from this cell 's memory and placed
in the specified register,

The LR instructions may be modified with a GC byte. This byte, when
transmitted just before the LR instruction, modifies the address o r the source
of the operand. The A (address) modification forces the cell to use the given
address instead of the calculated address. The D (data) modification forces the
cell to load the register with the data word sent on the intercell bus.
(immediate) modification will load the register with the displacement field of
the instruction,

The I

The DS modifier is invalid.

No matter what the source of the address, the address always specifies a
word in the cell's memory. Of course, the A and D modifications can not both
be used with LR instructions. The controller cell may use a D modification to
send the same data to all cells.

2. STR instructions store registers into memory.
and the contents of the specified register a r e placed in the addressed
memory location.

The address is calculated,

A GC byte, when received just before a STR instruction, will modify the
instruction. If an A modification is used, the given address i s used instead
of the calculated address. A data word, either 16 o r 32 bits (D16 o r D32),
may be specified. In this case, the register contents a r e ignored and a r e not
used, The data word from the cell bus is placed in the specified memory
location.
changing reg is t e r con tents . Thus words may be placed directly in a cells memory without

Both A and D may be given, In this case, the controller cell sends out
both the address in which the data is to be placed, and the data to be stored.
This serendipitious r e s d t is used by the controller cell to s ta r t up cells that
have had their memory cleared for some reason, such as a reconfiguration.

The DS modification, when used with a s tore instruction, is similar to
using a GC with an A and D.
not repeated with each data word, they a r e sent to the cell but once.
a data word is sent to the cell, the data is stored and thr: address is
incremented, An End DS GC byte will end the sequence.

The difference is the instruction and address a r e
Each time

The I modification can not be used with s tore register (STR) instructions,
because the displacement field is needed for an address.

3. OPR Instructions.
using the base (and perhaps an index register) , along with the displacement
in the instruction.
address a re obtained, and a r e used as operand 1. Operand 2 is always
obtained from a register.
performed with the two operands.
register o r registers.

The address is calculated in the normal manner,

The contents of the memory location specified by the

The instruction specifies what operation i s to be
The results a r e always placed in a

5-16

m
I
I
I
I
I
I
I
I
I
I
I
I
I
8
I
I
I
I

4.

5.

6.

7.

CG-1476.16/33

The following modifications a r e allowed,

- A A given address may be specified, which will be used instead of
the calculated address,

- D A data word is sent on the bus, which becomes operand 1. No
address is used. Depending upon the operation, the data word
may be either 16 o r 32 bits in length.

- I The displacement field from the instruction sent over the cell
bus becomes operand 1. No address is used.

- DS The DS modification may be used, however, the address is not used.
Because the same operation is performed with each word of data,
this DS modification may not be very useful.

- RR instructions operate exactly as in the independent state.- No modifica-
tions are possible. Because both registers a r e in the same cell, no
transmission of data by the cell bus is required. Only the instruction
itself is sent on the cell bus.

- R instructions are the same in both dependent and independent cells. No
modifications are possible with register (R) instructions.

EXECUTE instructions can be sent from the controller cell to the global
dependent cells. In this way every global cell can execute a different
instruction,
memory location are obtained and executed as an instruction.
instruction may be any legal instruction for a dependent cell.
(A) modification is allowed; the address of the memory location is sent
by the controller cell. No other modifications may be used.

The address is calculated, the contents of the specified
The fetched
The address

COMFare instructions a r e executed much differently in dependent cells
than in traditional computers. In the traditional computer, a comparison
is made between two values; one is located in a register. The comparison
results se t some flip-flops. In some computers, a separate instruction
tests the flip-flops and jumps o r otherwise modifies the program counter.
In other machines the same instruction actually modifies the program
counter. Sometimes, of course, the instruction dczs not modify the
program counter, depending upon the results of the comparison.

The dependent cells in the global state do not use the program counter,
The concept thus another means of using the comparison results is needed.

adapted here is to change the level register instead.

The instruction is received from the cell bus. The address is calculated,
and the specified word from the cell's memory is fetched.
is compared with the contents of a register (operand 2). The results of the
comparison will se t a pair of flip-flops to one of 4 states,
be overflow, greater, equal, less than.

This word (operand 1)

These will probably

5-17

C6-1476.16/33

Another instruction will test the state of these flip-flops and take some
action. Sometimes, the same instruction may compare, set the flip-flops and
take some action. The action to be taken may be one of the following. How
many a r e mechanized will depend upon further study. I

a. Continue at this level.
b.
c.
d.
e.

Increment level register by 1.
Increment level register by 2.
Decrement level register by 1.
Decrement level register by 2.

Any level register change will always discontinue the reception of instruc-
tions from the cell bus.

The conditions above a r e several that could be used. A compare instruc-
tion could state:

If Flip-flops a r e 00 o r 0 1 or 10
THEN increment level register by 1,
ELSE continue at this level.

Many other combinations a r e possible. How many will depend upon future
software studies, I

I
I

It is seen that, because the compare instruction uses data that may be
different in each dependent global cell, some cells may change levels and thus
discontinue receiving global instructions. In these cells, data processing will
be continued at a la ter time when the controller cell sends out a GC for the
new level.

Some compare instructions may use several words of memory, o r perhaps
several words from the cell bus a s a DS modification. The setting of the
compare flip-flops and the subsequent action is the same a s an instruction
that uses only two operands.

The modification possibilities have not all been explored. Some possibili-
ties a r e given here.

- A

- D

The given address is used instead of the calcuiated address.

The data sent on the cell bus is used instead of a regis ter operand.

- I The displacement in the instruction is used instead of a regis ter
operand.

I
1

- DS The words of memory starting at the given address a r e compared with
the data words sent on the data bus. If the comparison changes the
level register, the reception of data words is discontinued. If no level
change is made, the flip-flops are left a t their last state.

5-18

8.

9.

10.

11.

CG-1476.16/33

SKIP instructions are really test and skip. A test is made between two
operands, the result of this test is always True or False. The true state
will always increment the level register by 1.
from the cell bus will be discontinued immediately. The cell is placed in
the dependent wait state. The cell will remain in this state until a GC is
sent indicating instructions of the new level are being sent on the cell bus.
The false state will not change the level register; reception of instructions
will continue. If an address is required, it is calculated and the operand
is fetched from memory. One operand is usually from a register. Some
modification possibilities are:

The reception of instructions

- A A given address is sent on the intercell bus.

D The data word sent on the intercell bus is used instead of the
register operand.

- I The displacement in the instruction is used as an operand instead of
using a register operand.

- DS The words of memory starting at the given address are tested against
the words sent on the intercell bus. If any test is true, the level is
changed and data reception is discontinued. If every test is false, the
GC which indicates the end of the data string will be received; the
level register is not changed.

J U M P instructions are very seldom sent to dependent active cells because
they have no meaning. A Jump instruction will always be preceded by a
format GC, because a JUMP, by itself,' is never sent over the intercell
bus. The GC will indicate a special operation is to be performed. One
operation is to load the program counter with a value.
is not incremented o r used as long as the.cel1 is in the global state.

The program counter

- CC instructions are not sent over the intercell bus, but are executed only
by a controller cell. Their presence indicates a malfunctioning cell.

- GC instructions are received by the global cells. These instructions are
used by global cells to indicate the inter-cell bus data formats , and to
control levels.

The format GC instructions have been described in the sections on
addresses and data. These GC instructions describe what is to follow on the
cell bus. Eight categories are possible (Table 5-5).

Other GC instructions may be received by a global cell. Some instruc-
tions control the levels and states. These instructions have the following
formats:

GC level, G

Al l dependent cells at this level go to active global state.
Instructions for this level normally follow.

5-19

c6-1476.16/33

GC level, L

All dependent cells at this level go to local control.

GC level, W

All dependent cells at this level go to the wait state

Table 5-5 . GC Formats

Cell Bus
Bits 5-7 Description

Instructions follow (end of DS)

D16 (16 bit data word)

D32 (32 bit data word)

A (Given address)

A and D32

A and D16

I (Immediate)

DS (Data is being sent)

These three instructions will force all dependent cells at the given level
to change state. Of course, independent cells a r e not changed, neither a r e
cells that are at a different level from the level number in the instruction sent
over the cell bus.

A special instruction may be used to force the cells at a level to the
independent state.

GC level, IND

This instruction will s e t all the cells at this level to the independent state.
The cell or cells will begin at the location specified by the program counter
contents.

Another special instruction is the GC reply.

GC level, R

All cells at this level will respond to this GC instruction. The controller
cell will now allow the dependent global cells to transmit on the cell bus. All

5-20

.I

C6-1476. 16/33

cells which responded will now return a constant number to the controller cell.
Because all cells a r e setting the cell bus lines to the same value, the hardware
design i s simple.

This instruction is used by the controller cell to determine if one o r more
dependent cells a r e at a level. The cells may switch levels dependent upon the
value of the data processed by a cell. Thus some cells may o r may not be at a
specific level. To enable the controller cell to quickly and at low overhead
determine if there a re any cells at a given level, this reply instruction is
included. If no cells a r e a t this level, no cell will send back a constant to the
controller cell, and the controller cell will not receive the constant reply
number. The controller then may not need to send this level program. If a t
least one cell replies, the controller cell will note this and send out the pro-
grani to process this level cells. There is no way for the controller cell to
know how many cells a r e receiving the instructions at a level. With the reply
instruction, the controller cell knows only that there is at least one cell a t
this level.

12. instructions a r e described in the section on input-output. Dependent
global cells will usually not execute IO instructions, since the intercell bus
is being used for global instructions. Dependent cells wil l normally be
switched to local control to execute IO instructions.

5 . 7 . 2 Dependent Cells - Local Control State

The dependent cell can have i ts level register at a different value than the
instruction and data level that is being sent over the cell bus.
that a r e not active and not receiving global instructions may (1) idle or (2) execute
instructions from its own memory,
is local control and is discussed in this section.

These dependent cells

The first case is called the wait state, the second

The execution of instructions from the local memory will continue until one
of the following events occurs:

1, An instruction puts the dependent cell in the wait state.

2. A GC instruction is received from the inter-cell bus that specifies this
level.

3. A CC instruction is received on the intercell bus specifying this cell
address.

In the second case, the global instructions will always be used whenever they a r e
at the same level a s the level register, The programmer is responsible to be sure
that local control program is at a completed state before global instructions at this
level a r e sent from the controller cell.

Because the instruction execution is similar to the dependent active cell, only
Note that any GC instruction modifiers must be the differences will be noted below.

stored in the cell 's memory, preceding the modified instruction.
instructions is controlled by the program counter.

The sequence of

5-21

- LR

C6-1476.16/33

The instruction is fetched from the cell 's memory, the register
is loaded from the memory location specified by the effective
address.
instruction is present. The D or I modifier may be used.

The calculated address is used unless a GC modifier

The instruction is fetched from the cell 's memory, the register
is stored in the memory location specified,
is used unless a GC modifier is present. The D o r I modifier may
be used.

The calculated address

The operation i s performed between the memory location contents
and the register. The GC modifier can specify an address o r data
word.

- RR These a re executed exactly the same way in all cells. No modifi-
cations are possible.

The register instructions a re executed the same way in all cells.

Execute instructions a re executed as in an independent cell. The
address is calculated and the contents of the specified memory
location a r e executed a s an instruction. The fetched instruction
may be any legal instruction for a dependent local control cell.
A GC modifier may specify a given address.

B
EXECUTE

COMPARE instructions a r e executed in the same way as in a dependent global
cell. The comparison is made in the same way, only the instruc-
tion and all data a r e obtained from this cell.
set in the same wav.

The flip-flops a r e

The level register is either changed o r will remain the same. E
the register is changed, the cell will automatically go to the wait
state, If the register is unchanged, the cell will continue to execute
instructions in the local control state.

f
c

SKIP

The compare may be modified as given in the global cell description.

These instructions a r e executed exactly as in a global cell.
The results of the tes t , if t rue, will increment the level register
and force the cell into the wait state.
change the level register and thus the program will continue and
fetch the next instruction. The skips may be modified, as
described in the global cell description.

These instructions will usually be executed as in an independent
cell. The new value of the program counter is calculated and
replaces the present program counter value. Conditional jumps
a re also possible. One jump will take place depending upon the
comparison flip-flop setting, The jump may be modified with a
GC instruction to change the level register instead of changing the
program counter.

f
t
I

The false state will not

J U M P

5-22

C6-1476.16/33

- GC

These instructions are not used by a dependent local control cell
since it is not a controller cell,
as no operations.

These instructions can be executed by a local control cell. The GC
instructions of interest are described in the section on global
cells, Section 5 . 7 . 1

The CC instructions a r e treatcd

Only the following GC Instructions a re valid in a dependent local control
ce 11.

GC level, W

GC level, IND

All GC format control instructions

5. 7. 3. DeDendent Cell - Wait State

This cell is not executing instructions. The program counter is not being
incremented.

The dependent cell in the wait state is always examining the cell bus. When a
Global Control byte is received which has the same level number as the contents of
the cell 's level regis ter , the cell automatically switches to the active state and begins
to receive the global instructions from the bus.

A CC control word which addresses this cell (the cell address matches the con-
tents of the cell 's ID register) wil l cause the cell to receive and perform the operation
specified by the control word. This operation could switch the cell to another state.

5. 7 .4 Independent Cel l

The cell operating in the independent state is described below.
cell operation is very similar to the traditional computer operation.
all instructions and operands from the cell's own memory.
located at the address contained in the program counter.

The independent
These cells fetch

The instruction fetched is

The independent cell cannot set its ID register. The level regis ter , although it
is not used by an independent cell, may be set to any value via a special GC instruction

An independent cell will respond to CC commands received on the bus that speci-
fy this cell address (last name). Independent cells do not respond to level commands.
The cell that is in the independent state must stay in this state until the controller cell
sends a command on the cell bus with a cell address equal to the contents of the cell 's
ID regis ter to change states. Thus each independent cell must be addressed individu-
ally. ?'he independent cell concept is an important par t of the distributed processor
system. Other similar computer systems require all cells to be independent or all
dependent.

5-23

LR instructions a re all instructions that fetch an operand from a memory
location and load the contents into a register.
is calculated by adding the base register, index register (if one is specified) and
the displacement from the instruction. The low-order 9 bits a r e used to address
memory; the remaining 7 high-order bits a r e ignored. A GC modifier instruction
may be used, however, the address is always in the same cell.

The address of the memory location

STR instructions a r e the reverse of the LR, the register contents a r e stored
in the given memory location.

OPR instructions a r e similar to LR, only the present contents of the register
a r e combined with the memory location contents according to the operation
code.
include add, subtract, multiply, divide, AND, OR, etc.

The results of the operation a r e placed in the register, OPR instructions

RR instructions a re all instructions that use two registers, and place the
results in one register. Add accumulator 1 to accumulator 2 is an example. No
memory operations a r e required (unless the registers a r e stored in main memory).

R instructions a re all single register operations, such as shift, complement
accumulator, etc.

EXEC instruction is the traditional computer execute instruction. The specified
memory location contents a r e treated as an instruction; this fetched instruction i s
executed,
memory.

The independent cell can only execute instructions located within its own

COMP instructions compare two values. One is located in a register, o r is
understood (such as zero), the other is located in another register o r in the cells
memory.
will be one of 4 states. An equal comparison, for example, may se t the flip-flop to
00, greater to 01, and less than to 10.

The result of a comparison wil l se t two flip-flops to a certain state, which

SKIP instructions a r e always a test and conditional skip. The value tested may
be in a register or in memory. The result of a test is always true o r false.

The independent cell wil l modify the program counter contents based upon the
results of a skip test. If the test results a re true, P + 2 replaces the contents of
the program counter P. Lf the test results a re false, P + 1 replaces the contents of
the program counter P. In other words, the following instruction is skipped if the
test results a r e true.

JUMP instructions a re either conditional o r unconditional. Additional opera-
tions may take place in addition to the jump, such as storing the program counter in
an index register.

5-24

CG-1476.16/33

The jump is implemented in an independent cell by replacing the contents of the
program counter with a new value. This new value is the location in the cell's memory
where the next instruction to be executed is located.

&

The calculation of this new
value is dependent upon the type of instruction, however, in all cases, a new value
replaces the old value.
regis ter . If the test results are t rue, the program counter contents a r e replaced.
If the test results are false, the program counter is handled in a normal manner,
i . e . ~ the program counter is incremented by one.

Conditional jump instructions make a tes t , usually on some

CC instructions are Controller Cell instructions. Because the independent cell
i s not a controller cell, the CC instructions, when fetched from memory, are always
treated a s no operation instructions.

GC instructions are global control instructions. All the format GC instructions
may be fetched and executed by an independent cell.

The second type of GC instruction that may be executed by an independent cell
is the level set instruction.

The format is:

GC level, IND

The level number is specified by the programmer. The independent cell will

The level register does not affect the operation of an independent
s e t the given value into its level register and the independent cell remains an
independent cell.
cell.

Another GC instruction is the IND/DEP instruction.

The format is:

GC level, DEP

This instruction forces a cell into the dependent local control state. The next
instruction is taken from a fixed memory location One reason for requiring a special
location is to decrease the consequences from a bad program accidently executing this
instruction.
desired .

The interrupt to a known location can verify this change of state is

Input-Output instructions a re executed normally, as described in Sections 4 . 2
of this report. In fact, the Input/Output operation is the same for all cells except
those that are failed (obviously cannot perform I/O) and those in the power saving s ta te
(there are no memory words, the memory is shut off). In all other states the 1/0 is
the same.

5-25

CG-1476.16/33

5 . 7 . 5 Controller Cell

c
The controller cell is the most difficult to describe. This cell has the charac-

ter is t ics of the independent cell and of a storage bank. The controller cell controls
the intercell bus. The bus i s used for local communication between cells and global
communications. The local communication operation i s described in the section on
communication.

The controller cell supplies instructions and data to the dependent cells. The
description here will f irst assume that the controller cell is transmitting instructions
to the global cells, and the instructions a r e executed only in the dependent global cells
and NOT in the controller cell. This i s called the controller cell transmit mode.

The program counter in the controller cell w i l l fetch an instruction from
memory. If this instruction i s a CC TA instruction, the transmit mode is entered.
The CC TA instruction is described below, essentially this instruction causes the
controller cell to place the subsequent memory words on the intercell-bus. The
program counter controls the fetch of instructions.

Most fetched instructions that a r e transmitted a re NOT executed by the con-
troller cell. The transmit mode causes non-execution (by the controller cell) of the
instruction categories shown in Table 5-6. A delay between transmissions i s made
so the global cells will have time to execute the instructions before the next
instruction is sent,

J U M P instructions a re not sent out unless they a re preceded by a GC modifier
instruction. JUMP instructions a re normally executed by the CC. The program
counter is usually modified to s tar t a new sequence of instructions a s in an independent
cell. Conditional jumps are executed using data from the controller cell. The
address and registers used (if required) a re always from the controller cell. The
GC Modifier may be used if it is required to send out a J U M P instruction to the
global cells.

Table 5-6. CC Transmitted Instructions

LR

STR

OPR

RR

R

EXEC

COMP

SKIP

Load Register

Store Register

Operate on Register

Register to Register

R e gi st er

Execute

Compare

Test and skip

P ‘ 5

5-26

.. C6-1476.16/33

The other controller cell mode is the execute mode. In this mode, the instruc-
tions are fetched and executed like an independent cell. All twelve instruction
categories may be executed. The instructions to change the modes is described in
the CC instruction description given below.

Because instructions a re either executed as in an independent cell or a r e
transmitted and not executed by the controller cell, the detailed instruction execution
description will be omitted.

Controller cell (CC) instructions a re always executed by the controller cell,
regardless of mode. There a re two groups of CC instructions: the cell address
group and the controller cell mode control group.

The latter group of instructions are used to control the controller cells opera-
tion. The instructions concerned with the instruction execution and mode will be
described here, those concerned with reconfiguration and interrupts will be omitted
for the t ime being.

The mode control instructions require two bits of the instruction to specify the
operation to be performed. A GC format instruction, as it exists in the controller
cell memory, has two spare bits. Therefore the GC format instruction and the CC
instruction may be combined to save storage in the controller cell.
explanation, the instructions wi l l be considered separate.

To simplify the

The mode instructions have the following format:

cc X

where X is one of the following

T

TA

Enter the transmit mode until one instruction (including any
modifiers, given address, etc.) has been transmitted and
then return to the previous mode.

Same as T, only the transmit mode is retained until a CC
with an E o r EA is executed.

E The following instruction (including any modifiers) is executed
by the controller cell. Then the controller cell is to rever t to
the previous mode.

EA Same as E, only the execute mode is retained until a CC
instruction with a T or TA is executed.

The controller cell has many instructions to control the other
Many of these are concerned with Input/Output and a r e described i n
report.

5-2 7

cells in the group.
Section4 of this

The cell address CC instructions cause a control word to be formed and sent on
the intercell bus. The control word always contains the cell address, which all cells in
the g o u p compare to the contents of its ID register. The cell whose ID register contents
match the cell address will respond to the control word and perform the specified
opcmtion.

The instruction has the following format

cc cell address, X

where

Cell address The number to be compared to the ID register

X is one of the following

IND The cell is set to the independent state. The program
counter i s loaded from a specific location of the cells
memory.

G The cell is set to the global state.

W The cell is set to the dependent wait state

L The cell is set to the dependent local control state

cc The cell i s made a controller cell.
instruction automatically makes the transmitting cell an
independent cell.

The execution of this

For the CC instructions G , W , and L instructions may follow the control word

The cell receiving
on the intercell bus,
instructions until a CC o r a GC specifying a level is transmitted.
the GC will go to the specified G, W, o r L state, then check the level sent with the
GC with the level register in the cell. Instruction modifiers may be sent with the
instructions on the intercell bus.

If this is done, the receiving cell wil l execute the transmitted

Another CC instruction is the following:

cc Cell address, level

The cell specified by the cell address is set to the level specified. The state
is not changed.

The following GC instructions may be executed by a controller cell:

All Format instructions

No others have any meaning when executed by a controller cell.
be one controller cell, thus the only way a controller cell can change states is to
simultaneously make another cell a controller cell.
CC instruction.

There must always

This is done with the special

5-28

CG-1476.16/33

5.8 ADDITIONAL TOPICS

The concepts described here make a powerful system with many options on how
operations can be performed. Further study may show how features can be changed
to improve the system. These trade-offs have not been performed. A number of
alternate concepts a r e given in this section to show some other ideas considered.

The given address, a s described above, w a s used without modification by the
receiving cell. An alternate idea, which may aid in the software, is to have the cell
always add a base register to the given address before it is used. Because each cell
can have its base register set to a different value, the placement of programs and
data in the cells may be made easier by using a base register with all the given
addresses.

The use of a special instruction (GC) modifier w a s selected here because it
used the least amount of time on the cell bus. Another way is to reserve a bit o r so
in each instruction (or memory word) to indicate its length and any special address
modifications, and how much data was attached. The advantage is that each instruc-
tion ca r r i e s its own length code, etc. The disadvantage is that each instruction must
be made longer. The modifier makes only the modified instructions longer, but they
are very much longer than they would be in the other method. The present decision
was to make the unmodified instructions as short as possible, even though this made
the modified ones long. The net result should be a storage saving, especially in the
independent cells,

The two modes of a controller cell are only one way of selecting which con-
t rol ler cell words a r e instructions to be executed, instructions to be transmitted to
global cells, given addresses, data, etc.

One method is to place ex%ra bits on each memory word, telling what the word
is. This method requires many extra memory bits in all cells.

Another method is to use two program counters. One program counter controls
the fetch of instructions to be executed by the controller cell, the other program
counter controls the fetch of instructions to be transmitted to the global cells. This
two program counter idea allows the modes to be discarded. The resulting system
is now much more elegant and powerful.
hardware.
will be studied further.

However, the processor now requires more
The impact is presently unknown. It is believed this idea has merit and

In addition, another method would be to store in the controller cell as input/out-
put data for the intercell bus, all the instructions and data that are to be placed on the
bus. This approach is very inefficient since the controller cell must identify control
words by setting the control line in the bus; it has no means of distinguishing between
instructions and data since they are all stored as 1/0 data. Of course one approach
as noted above would be to have extra bits stored with each word identifying it as
instructions o r data with the resultant penalty of increasing the number of bits used
for storage. Another method here would be to s tore the count of the.number of words
between the control words and use these counts to identify the control words. This
approach requires storing a number of counts, additional control hardware and makes
program modification difficult.

5-29/5-30

C(i- l476.16/33

6. COMMUNICATION BUS OPERATION

6 . 1 INTRODUCTION

This section will discuss the operation of the intercell bus shown in Figure 1-1.
The bus is under complete control of the cell in the group designated as the controller
cell. The number of lines in the bus depends heavily on the communication rates
required. Determination of this number is premature a t this stage of the machine
design. However, for preliminary design purposes an 8-bit parallel bus shall be
assumed. This then provides for 1/2 word bytes to be transmitted over the bus
(16-bit word length in the cells).

U s e of the cell takes place in basically two types of modes: (a) local and (b)
global.
on the basis of cell address identification and not dealing with control of levels o r
states of cells while global use implies communication of the controller cell with one
o r more of the other cells with control set up on the basis of cell address identifica-
tion, levels, o r states for the purposes of global control and/or communication with
the cells.

Local use is basically communication between two cells with control set up

The bus i s used for both instructions and data. Local use of the bus is basically
for passing data aniongst cells and amongst cells and 1/0 devices connected to the bus
(see 1/0 section for a discussion of the 1/0 operation). Global use of the bus may be
for instructions and/or data. In any case the controller cell sets up and controls all
information flow over the bus. Software routines are se t up in the controller cell to
control the operation of the bus.
routines: fixed periodic and background.
those that must take place a t predetermined intervals.
global type of communications.
updating of navigation and guidance parameters computed in another cell every second,
a se t of global operations comprising a periodic program that must be computed ten
times a second, etc. Background type of operations on the bus are those that take
place in the absence of any fixed periodic operaticns; in other words operations fitted
in between ,the fixed periodic operations.

There are basically two types of operations in these

These may be either local o r
Fixed periodic operations on the bus a r e

Examples of such operations a r e a cell requiring

The fixed periodic operations are generally fixed o r predetermined in terms of
execution time while the background are not. Therefore the routines in the controller
cell can schedule o r sequence the fixed periodic operations just as these types of pro-
grams are scheduled by an executive (reference 2). Background operations a r e sched-
uled between the fixed periodic operations by the routines sequentially granting access
time on the bus to cells. The access time granted to the cells may be variable depend-
ing on what cell it i s and loading conditions on the bus. The routines in the controller
cell for handling the communication bus are part of the executive design and will be
investigated in la ter phases of the study.
investigations of the operation of the bus and the type of words and formats required
to mechanize operation of the bus.

This section will present the results of

A total of nine lines a r e used for the intercell bus. One line is used to denote
control o r data and i s designated the control line.
for control o r data words.
as the controller thereby prohibiting all other cells from erroneously using the control

The remaining eight lines are used
The control line may only be driven by the cell designated

6-1

' ,

C6-1476.16/33 ..

line.
line; this is accomplished by the use of driver/receiver circuits at the interface with
the lines in each cell (see ref. 3 for a discussion of these circuits).

The use of the remaining eight lines, in particular for control purposes will be
described below. There a re basically two types of control words used: Local and
Global. Local words a r e distinguished by requiring a particular cell identification or
address to be specified while global words require the specification of an identification
address o r certain global levels or modes. The control words are decoded by all the
cells and the only appropriate cells partake in o r accomplish the desired communica-
tion on the inter-cell bus.

The lines are bidirectional so that a cell may receive o r transmit over the same

6.2 LOCAL COMMUNICATION OPERATION

The operation of the bus in a local mode will be explained first . All words over
the bus a r e composed of eight-bit bytes whether they a r e control o r data words.
control words are identified a s such by use of the control line; the f i rs t byte of any
control word is identified by the control line set to a one (control) state:
line will return to a z e r o after the f i rs t control word byte.
more than one byte, this i s accomplished by use of special control word formats as
will be explained below.

The

The control
Some control words require

The format of the f i rs t byte of a control word is shown below:

C 1 2 3 4 5 6 7 8
lines: r I I

Cent/ Cell
(Data I Command I Address

Three lines a r e used for the command thereby providing eight possible command states
and five lines for the cell address.
cells.
sidered, this would then leave room for 1 0 1/0 devices to be connected to the bus (2
addresses are required for the two group switches connected to each intercell bus).
It also provides for expansion so that more cells may also be added. If 32 addresses
a r e not sufficient for addressing cells and 1/0 devices on the bus, i t i s relatively sim-
ple to provide for expansion beyond 32 by using an address extension scheme.
involves using some address, say address 32, to signify that the next byte contains
more address bits. This of course has to be designed into the hardware, however i t
i s relatively simple to implement and can provide for a high degree of expandibility
both in terms of cells and 1/0 devices connected to the intercell bus. Of course it i s
possible to provide this expandibility in the cells o r the 1/0 devices only, for example
providing up to 31 cells and using address 32 for an address extension scheme in the
1/0 devices only, etc.

This provides for addressing up to 32 devices o r
The group may consist of typically 20 cells for the manned M a r s mission con-

This

The following types of communication a r e required to be carried out on the inter-
cell bus: (this list includes both local and global operations):

1. Controller cell to send words directly to a cell under controller cell 's
command.

2. Controller cell to receive words directly from a cell under controller
cell 's command.

6 -2

CG-1476. 16/33

I

3 . Controller cell to scan bus usage requests from individual cells and
establish communication between two cells based upon requests.

4. Controller cell establishing communication between two cells.

5. Controller cell issuing a command to a cell specifying some change to the
internal control state.

G . Controller cell issuing global commands to one o r more cells.

It should be noted that 1/0 devices are also included in the term cell used above. The
global operations are numerous and deserve to be treated as a separate entity; there-
fore they will be discussed in a latter section. A description of the commands in the
f i r s t byte of the control word will be given below:

Table G - 1 . Communication Bus Commands

Command No. Code De sc riDtion

000 Global mode command

001 Global mode command

010 Report communication

xO

x1

x2 request status

011 Input x3

x4

x5

x7

x6

100 output

1 0 1 Report Status Word

1 1 0 Control Reconfiguration

111 Extended command
format

Commands Xo, X1: These commands are used for global operations, the
remaining 5 lines are not used for cell address purposes,
the next section will go into detail on these commands.

Command X2:

Command X3:

This command requests a response from a given cell as
to the s t a t u s of its requests for use of the communication
bus.

This command tells the cell to input the next set of data
words on the bus. (A se t of data words i s defined as the
words on the bus in between command words)

6- 3

Command X4:

,

Command X - 5'

Coninland XG:

7: Command X

C (i- 14 7 (j . 1 6/33

This command tells a cell to output a set of data words
on the bus.

This command requests a cell to send to the controller
a status word representing certain control states in the
cell.

This command forces a cell to perform some change to
the internal control state (e. g. turn on/off etc .) .
This command uses an extended format. It requires the
second control word byte to idedify what the command
consists of; this then provides for more than the eight
basic commands listed here. This command will a lso
be used to change cells from local control modes to
global control modes as wil l be explained in the next
section.

The mechanization of the required communication operations on the bus will now be
discus sed :

1. Controller to send words to a cell:

Sender:

Receiver:

BYTE :

Lines

C

1

2

3

4

5

6

7

8

c o c o c o c o -
ALL C1 C1 C1 -
1 2 3 4

1 0 0 0

x3

I
C
E
L
L

0

A
D
D
R
E
S

0

0
U
N
T

1 D

A

T

A

6-4

'.

.'
C(i-1476.16/33

The f i r s t byte of the control word i s identified by a one on the control line. A s
mentioned previously the f i rs t byte contains the command, input, and the
address of the cell, C1. A 9-bit address i s sent in the second byte and par t of
the 3rd byte to identify the f i rs t location in the cell to be input to. The number
of words to be input to the cell a r e specified by the count which i s sent in the
remaining par t of the third byte and part of the fourth byte (if needed). The use
of only three bytes in the control word provides for a count of up to 32 words.
If a count of more than 32 i s to be input then a fourth byte is sent to the cell.
The cell determines when the control word i s complete by the 0 to 1 transition
on line number 1 as shown above; this scheme provides for the capability of a
variable length control word format and saves the transmission of one byte
when less than 32 words are to be input.
to identify the cells: Co, the controller cell, C1 and C2, the cells used in the
communication process.

The following definitions wil l be used

2. Controller to request words from a cell

Sender:

Receiver:

BYTE :

Lines

C

1

2

3

4

5 .

6

7

8

c O

A

1

1

1

1
i'

7
C
E
L
L

cO

c1

2

0

0

I
A
D
D
R
E
S
S

c O c1 -
c1 cO
-

4

0

1 D
A -

T
A

*

The same discussion as for 1 above applies here except that the control
word applies to outputting data from cell C1 now.

Controller to scan a cell for communication requests - Cell, C1, to request
words from cell C2.

3.

6- 5

I
I

'. I
C6-1476.16/33

Sender: c o IC1 c1
Receiver: L IC0 c o

A

LI
BYTE : 1 12 3 7 8 9 1

I

I I I
I
l o

I E

Lines
I I

C

1

1 0 0

I ij
ii" ii'

0 0
O I I

I
1.
8
1
I
1
I
I

1 I D U
N
T

A
D
D
R
E
S
S

0 0

2 4" A
D
D
R
E
S
S

3

I -
C
0
U
N
T

4

C
E
L
L

5

L I L L I L
I I
I c 1 I c2

6

7 c1

I t I I I 1 8

The controller cell outputs the f i r s t byte of the control word sequence,
X2, which asks a particular cell, C1, if i t has a request for service on the
bus. Cell, C1 , responds by outputting a response word as shown above. In
this particular case the f i rs t byte of the response identifies the desired opera-
tion (input for this case), the Cell, C2, communications i s desired with, and
par t of the word count, the address and number of words are completed in the
remaining two bytes. The address in this case specifies the location in cell
C2 from which the words are desired. If a cell has no request the response
will consist of two bytes all zeroes. It should be noted that cell C2 could also
be the controller cell with whom a request is made for communications with.

The controller cell accepts the response from the Tell and examines the
request.
accomodated on the communication bus. The controller cell then outputs the
fifth byte of the control word which i s an input command to the cell, C1, that
requested the words. Next the controller cell outputs the remaining control
word bytes telling cell C2 to output a certain number of words (may be reduced
below that requested by C1) starting a t a location specified by the address.
The same comments apply as before with regards to varying the length of the
X4 command should less than 32 words be desired to be communicated.

It w i l l determine whether the full word count requested can be

It should be noted that the X3, input, command to cell C1 given by byte 5
i s not executed until byte 9 has been sent.
command is a variable length command and requires a 0 to 1 transition of line 1
after transmission of the f i r s t byte of the control word comprising this command
to signify the complete transmission of the command.

This is due to the fact that the X3

This logical function i s

6- 6

I
E
8

CG-1476.16/33

1

utilized here so that cell C1 is told to input, however i t will not pick up words
on the bus until byte nine has been transmitted (this 0-1 transition will enable
the receiver circuits in cell C1 and simultaneously enables the dr iver circuits
in cell Cg). It should also be noted that the byte 6 command i s actually not
examined by cell C1 since it has a command which i s in the process of being
se t up (normally a 1 on the control line forces all cells to examine the command
to determine if i t i s for them). Also note that the number of words that will be
received by cell C 1 may be different (less) from that requested by it; the cell
keeps track of the difference if any between the number of words requested and
actually received. If any difference exists i t will take the appropriate action on
i t s next request to the controller cell.

41

4. Controller to scan a
to send words to cel

I i7
' I

Sender: 1:o I C 1 c1

c o

3
I Receiver:

BYTE

cell for communication requests - Cell, C, ,
c2

6

0

0

i
A
D
D
R
E
S
S

c o

c1

1 0

0

0

1

I

x7
E
X
T

I
C
0

I

c o

c1

o request

c1 -
c2 -

l1 I
0 I

D
1 I A -

T
A

N u I
T ,

The mechanization of this operation i s very similar to that described
above for the input request by a cell. In fact the f i r s t four bytes are identical
except that an output is indicated in the second byte. The cell, C2, to whom
words are to be sent is told to input by bytes 5 through 8; note that byte 8 does
not have line 1 in a 1 state. This prevents cell C2 from picking up the next
three bytes as data words. The requesting cell, C1, is told to output by means
of an X7 'extension command (output - word count), this i s used since all the
controller can tell cell C1 is how many words i t may output since it does not
know from address they will come from (if i t did i t could use an X4 command).
The X7 command i s a variable length command and therefore uses a 0 to 1

6-7

C6-1476.16/33

transition on line 1 after the f i r s t byte to signify i t s completion: note that this
transition is also used to complete the X3 command given previously to cell C2.

5. Controller Cell to tell one cell, C1, to output to another cell, C2.

\ I
l b

Sender: c o c o

Receiver:
I A

7 1
A h

BYTE: 11

Line I
I 1

I x4

C

1

2
1 1
I 1

4 I1
b 5

6

I c1
8 I 1

7

2

0

0

1
A
D
D
R
E
S
S

c0 I Z o c0

4 1 5 6

1 : 0
I

0

0

D

l L

c o c o I c1 *

c2 c2 I c2 -
7 8 1

I
I

U
N
T

I /

D
I A *

T
I A

I
I
I
I

This operation requires an output command as described previously to be
given to the cell C1 and an input command as described previously to cell
C2. The only difference i s that a 0-1 transition on line 1 is inhibited in
byte 4 so that cell, C1, may not s ta r t sending data until byte 8 has been
transmitted.

6. Controller Cell to tell one cell; C to input f rom apother cell, C (Same 1' 2' as above.)

Controller Ce l l to command a cell, C1, to reconfigure some control state. 7.

6- 8

E
t
I
B
E

~~

Sender:

Receiver:

BYTE :

Line

C

1

2

3

4

5

6

7

8

c o
A

L
L

1

1 OR

1
iG
I
C
E
L
L

CG-1476. l (i /33

c o c o
A

c1 L
1 2

1 0 This command is simply a one
byte command if the control
change is represented by x 6 ,
two bytes are necessary to
identify other changes by

1

1
'7 u s i n g ~ 7 . i7

' E

C T
E E
L N
L S

I

8. Controller to Command a cell, C1, to report its status word.

Sender :

Receiver:

BYTE :

Line

C

1

2

3

4

5

6

7

8

c o c l -
A

L c o -
L

1

1 S
T I AT U

i5 S

W
0

R
D

I
C
E
L
L

fl
6- 9

C(i-1476.16/33

1

This command forces cell, C l , to output a fixed location status word to
the controller.
of the study.

The format of the status word will be determined in la ter phases

0 0 0 Y L

It should be noted that there are a number of alternatives jn deriving the formats
presented above. For example, i t i s possible to only use one byte for the X3, input
command, since the f i r s t word transmitted could contain address and word count
information.
taminates the data being sent and received with control information. It i s also possible
to not use the variable command scheme requiring the 0-1 transition on line 1 for
certain commands (X3, X4 and X7). It would thereby provide for up to 128 words
with three bytes fo r the X3 and X4 commands.
use a word count of 128 to signify that the next byte is to be used as an extended word
count, this could result in some savings on the bus. However i t would not be possible
to use the 0-1 transition logically to delay the s ta r t of certain X3 and X4 commands as
was explained above.
and/or transmission of additional bytes so there may not really be any savings in
eliminating this logical function.

However, this provides no transmission time saving on the bus and con-

To go beyond 128 words. one could

To accomplish this would require additional logical circuitry

6 . 3 GLOBAL COMMUNICATION OPERATION

This section wi l l present a description of global control of the inter-cell bus.
The same format is used as presented in the preceeding section (6.2). It was pointed
out there that commands Xo, Xi , and X7 are used for global control. Commands Xo
and Xi do not specify a 5 bit cell address identification but use the bits for control
purposes; these commands will be one 8 bit byte long. Command X7 will utilize a
5 bit cell address identification, as mentioned previously it uses command extension
and is variable in length to offer the possibility of many control commands within X7.

G. 3.1 Format GC Instructions

One byte is used here and the format is shown below:

lines: C 1 2 3 4 5 6 7 8

Y = 11
L = 000

001
010
0 1 1
100
101
110
111

indicates format type GC
indicates end of DS data words
indicates A - given address
indicates D16 - 1 6 bit data word
indicates A and D16
indicates D32 - 32 bit data word
indicates A and D32
indicates I - Immediate data
indicates DS - Data is being sent (A is also sent here)

'.

6-10

I
t
d
1
1

1 0 0 1 Y

* -

C6-1476.16/33

L

6.3.2 Level Control GC Instructions (Class 1)

The same one-byte formatas given above s used here.

L i s always the level number to be compared to the contents of the
level register in the dependent cell.

Y = 00 G - indicates all cells a t this level go to global state, instructions
for this level follow

0 1

10

L - all cells a t this level go to local control state

W - all cells a t this level go to the wait state

6 .3 .3 Level Control GC Instructions (Class 2)

One byte is used here and the format i s shown below:

lines: C 1 2 3 4 5 6 7 8

L is always the level number

Y = 01 R - all cells a t this level reply with a constant, to be sent on the
inter cell bus.

10 IND - all cells at this level go to the independent state.

00 Spare

11 Spare

6-11

below:

BYTE :

LINES

C

1

2

3

4

5

G

7

8

C6-1476.16/33

6.3.4 Individual Cell GC Instructions

Recall that the X7 extended format command is used here , the format i s shown

1 2

1 0

l 1 1
x7 I x7

1 :
L L 1
I !
E c 1

The three variable fields have the following meanings:

CELL The cell address that i s compared to the cells ID register

L The level number that is to be loaded into the cell's level
register.

X7 EXT

When X7 EXT = 1000 IND Go to independent state

The operation to be performed by the receiving cell.

1001 G Go to dependent global state

1010 W Go to dependent wait state

1011 L Go to dependent local control state

1100 CC Go to the controller cell state.

The remaining X7 EXT codes are used for other
operations, one of which was given in Section 6 .2 .

The use of the instructions presented in this section was given in Section 5 and
reference should be made to clarify their use in global operation of the bus.

6-12

C6-1476.16/33

7. MACRO INSTRUCTIONS

The DAMP system is basically an a r ray of cells consisting primarily of storage
with a small amount of each cell devoted to a processor (arithmetic and logical). An
important consideration is what can be added to the processor section that can result
in requiring less storage and a net reduction in total hardware required in the cell.
Macro instructions (MACROS) were one such feature considered and this section will
give a brief discussion of Macros in general and several specific types investigated.

A considerable amount of additional effort in this a rea would be necessary in
order to choose a set of Macros to add to the set of common instructions (add, sub,
t ransfer , etc .) . In particular the amount of hardware necessary to implement a
Macro should be traded-off against the amount of storage necessary to implement it
as a subroutine using common instructions. In addition, it should be determined how
much each macro would be used, since including it in the instruction repetroire
requires including it in all cells. This would clearly only be worthwhile if the Macro
was used often and it required a relatively small amount of hardware compared to the
amount needed for common instruction storage necessary to implement the same
operation. The above trade-off is biased against including most macros that may be
suggested. In fact the situation is even worse when it is considered that many func-
tions that a r e candidates for macros, such as sine o r cosine, could be implemented
as a common subroutine in a single cell devoted to receiving parameters from other
cells and sending back sines, cosines, etc. as required. A s a result storage for
certain routines may only be required in a small number of cells.

7 . 1 CORDIC ALGORITHM

The Cordic Algorithm is adequately described in the literature as a useful
means of generating sines, cosines, and other trigonometric or hyperbolic functions
(see ref. 4 and 5) . Some consideration was given to including the hardware necessary
fo r an efficient use of the algorithm in the processor sections of the cell. The
algorithm could of course be implemented by programming with a normal instruction
set; however this would require more instructions than the typical ser ies solution
implemented.
order of 30 instructions depending on the machine). A s a result consideration was
given to making the necessary additions to the general purpose hardware in the cell.
(The cordic hardware does not provide sufficient flexibility to replace the GP hard-
ware; however it may enable some instructions to be deleted from the normal
instruction set.)

(The series solution for sine and cosine simultaneously requires on the

.

The hardware used to implement the algorithm typically involves three regis ters
capable of being shifted, two adders connected to two of the registers so that c ross
addition of two of the three registers can occur, a third adder for the third register,
gating hardware to enable a variable pick off from two of the three registers (this
enables 2-j, j = 0, 1, 2 . . . n, t imes the contents of a register to be picked up for c ross
addition), and control circuitry. In addition to the above, for an n bit word, n angle
constants must be stored either directly in fixed hardware o r in the memory. The
above regis ters can be simply made available from the normal processor regis ters
(accumulators); however it would be necessary to add additional connections, adders,
gating, control circuitry, and possibly the n constants. (If the constants are not in

7-1

C6-1476.16/33

fixed hardware they must be accessed from memory via stored instructions o r by
control circuitry.) In any case, implementation of the cordic algorithm, including
the stored constants, would require a few thousand FET's in addition to the 5000 used
for the general purpose hardware. Even with this hardware the algorithm still
requires a number of instructions at least for initialization and storing the result.
The hardware implementation of the algorithm would offer increased computation
speeds for trigonometric functions, but this is not what is needed in the distributed
processor system.

An accurate comparison can not be made of the above hardware that would be
required in every cell with the number of instruction locations in the whole machine
that would be required to execute the same functions. However, the applications for
which the cordic algorithm would be useful, navigation problems involving sines,
cosines, coordinate transformations etc. , represent only a small percentage of the
requirements for the space missions under consideration. A s a result trigonometric
routines would only be required in a small percentage of the cells. In fact use of
separate cells for subroutine storage and execution as mentioned in the introduction
would reduce to an even smaller number the percentage of cells storing trigonometric
routines. From the above discussion it can then be realized that increasing the com-
plexity of each processor by the addition of cordic hardware would bring a small
return in additional available memory. A s a result it is considered to be not worth-
while to implement this algorithm.
plexity of course makes the processor more difficult to fabricate and can result in
lowered wafer yields, as a result complex macros should not be included unless they
save a good amount of storage.)

(A relatively large increase in processor com-

7.2 DDA

The cell could be made into a DDA-GP structure. The DDA portion of the
machine could be used for generation of trigonometric and hyperbolic functions as
with the cordic hardware; however this DDA-GP organization would not be worthwhile
for the same reasons as for the cordic algorithm. Quite a large number of FET's
would be needed since at least two complete DDA's would be required including pro-
gramming flexibility for the interconnections. In addition, the DDA implementation
would require a number of memory words for initialization and storing the result.

7.3 GENERAL MACRO SET

Macros a r e being considered for the DAMP System primarily from the stand-
point of saving storage. A s a result, the present investigation of macros is pointed
toward those that would replace a number of common instructions (decrease the
number of bits associated with instructions so that less instructions can be used) and
that would be used in a reasonably large number of computations. Actually, limited
usage of macros would be acceptable if they did not require very much additional
hardware in the processor.

The following paragraphs discuss a few basic types of macros in order to point
out the type of macro that is the most fruitful to investigate for storage savings. The
first type presented a r e basic instructions (add, etc.) that operate on non-ordered
lists of data (i. e . , each data word must be individually addressed). These macros
save some bits, but it is felt they will not be used very often in the applications of
interest here. A second type of macro would again car ry out basic instructions but on

7-2

C6-1476.16/33

ordered lists of data. These macros a re shown to be of relatively small value because
they only replace loops that generally contain a very small number of instructions.
The third class of macros are characterized by complex instructions on any type of
data. These macros are shown to offer the best possibilities for storage savings; a s
a result , investigations of macros should emphasize this latter type.

It should be emphasized that when trying to save memory, the number of bits
used by a macro instruction is of importance. There are a number of types of
macros that can be investigated for memory bit savings. One example is multi-
operand macros that individually address a number of operands (operation on non-
ordered data that must be addressed from random locations) and car ry out a basic
logical o r arithmetic operation on all of them. These macros require sufficient bits
to address each operand; as a result the only memory savings is due to the saving of
the op code bits that would be necessary to individually access and combine the
operands. This saving could be large if enough operands could be combined at once.
However, for macros that would be used sufficiently it seems that only a very few
operands could be combined at once as described above and a s a result the bit savings
would be typically small.

Many operands with a single basic arithmetic o r logical operation a re typically
carr ied out with data that is ordered into some type of a list in memory so that inher-
ent operand addressing is possible. An example of this type of addressing is the
processing of a list of information with an instruction loop that uses index regis ters
to hold and update the operand addresses. (Note that the list does not have to be
simply sequential. It could use every other memory location, etc.) The inclusion
of a repeat mode in a processor enables loops, as described above, that contain a
single instruction to be executed very quickly since the count of the t imes through the
loop and the termination of the loop are automatically handled. However the use of
a repeat mode o r of a macro to initialize the appropriate index regis ters and execute
an operation on a list of ordered data can save very little storage since the loops used
to ca r ry out the same operation require only a few initialization words for the appro-
priate index regis ters plus the basic loop (one operation plus index handling instruc-
tions). A s a result a macro to carry out a basic operation on an ordered list would
save very few bits (only the op code bits for the index initialization and handling
instructions). The inclusion of such macros o r even a repeat mode is then not worth-
while in the DAMP System unless an increase in the speed of execution is needed.
Another type of macro that could use basic arithmetic o r logical instructions and
forms of inherent operand addressing to save storage bits involves using a push down
stack in the processor. Data could be processed and placed in the stack, and when
appropriate a macro could be issued that executes a basic arithmetic o r logical oper-
ation on the top members of the stack. The number of words to be combined would
be the only parameter required in addition to the op code (no addresses). This macro
would then save the loop initializations and index handling that would be necessary if
the same instruction was executed on the list of data by a loop. The stack may also
find other uses fo r the programs, however, it is not clear at this time that such a
stack would find any real usefulness.

The class of macros characterized by a single instruction that replaces a
quantity of basic instructions offers a good opportunity for memory bit savings; how-
ever , macros of this type that will be used fairly often and do not take an unreasonably
large amount of hardware are difficult to find.
operate on very few operands or could use some form of inherent operand addressing

Useful macros of this type could

7- 3

a .

C6-1476.16/33

to operate on lists of operands. In fact use of the cordic algorithm to generate
trigononietric functions could be considered an example of such a complex macro.
This macro could call out sine, for example, and then give the angle to a hardware
unit set up to return the answer; however, this macro w a s shown to be impractical
from a hardware standpoint since it provided high speed sine generation but saved
very little storage and was not used very often. Exactly the same arguments eliminate
consideration of special function generators using diode arrays, for example. One
possible useful instruction of the complex macro type is the vector dot product. It
would address the first element in each vector and place the addresses in index
registers. The instruction would also specify the number of elements in the vector
and place this value in a third index register. The elements of the vectors would be
stored in the memory in sequence following the first element.
then address all elements by simply incrementing the index regis ters , multiplying
corresponding components, and adding to the previous sum (stored in the second
upper accumulator and the lower accumulator) until the third index register reaches
zero and the operation is terminated. This macro would then save the bits necessary
to specify the initializations and the sequence of operations within the loop that could
be used for the calculation.
executing matrix multiplies, however it may also find use a s a substitute for a sum
of products multiply.
would be multiplied instead of one of the upper accumulators and a memory location.
This is acceptable except that more bits a r e required than for specification of a simple
sum of products multiply; therefore the vector dot product instruction would be an
improvement in this case only if the use of the sum of products instruction generally
requires the accumulator to be loaded first. (This is probably not generally the case.)
In order to get a good evaluation of the value of this macro its use in a matrix multiply
needs to be compared to a loop implementation of a matrix multiply. The amount of
usage of the instruction should also be evaluated. Other macros of the above complex
type need to be investigated. Two possibilities a r e a full matrix multiply and complex
operations on a stack.

The instruction would

The main usefulness of this instruction would be in

The difference in this latter case is that two memory locations

7-4

C6-1476.16/33

8. PROCESSOR DESIGN

8 . 1 PROCESSOR FEATURES

This section will describe the general features of the processor section of each
cell (actually the 1/0 portion of each cell is also included in the processor section).
In particular, the word length, accumulators, index-bank registers, and the instruct-
ion word format will be discussed. Since the requirements to be designed to are
not very f i rm at this point in time, some of the alternatives discussed cannot be
explicitly chosen as optimum. In addition, certain types of features such as those
associated with the global mode operations and communication bus are presently under
investigation and are therefore not included in the processor design. Therefore, even
though this section is not complete, it is included to give some perspective as to the
description of a cell.

8 .1 .1 Accumulators and Index Registers

This sub-section will discuss the use of multiple accumulators and multiple
index regis ters in te rms of their ability to save storage. Since it is not necessary
for the processor to operate at high speed, as many of the processor registers as
possible will be stored in the memory. This enables many regis ters to be used
for the processor at a small increase in system complexity o r lowering of
wafer yields.
fabricated with high yields by using discretionary wiring or similar techniques.
On the other hand, the registers constructed in the processor a r e generally par t
of lower yield complex logic. (If this differences in ease of fabrication is eliminated
in the future the multiple accumulators and index regis ters can be included in the
processor section of the chip. The instruction execution t ime would then be
decreased.) Because of the above points there will be just one accumulator in the
processor section of a cell and any additional accumulators will be accessed from a
specified area of the memory.
The index-bank regis ters will also be contained in a fixed area of memory.

This is the case since registers in the memory can be easily

(The chosen processor uses four accumulators.)

Accumulators

The use of more than one accumulator can save a significant amount of
execution speed and, of more importance for this application, storage.
savings comes about since intermediate results do not have to be stored in the memory
o r in hot storage. A s intermediate results are obtained they are simply left in the
accumulator in use and another accumulator is brought into use. In this way it is not
necessary to s tore the first accumulator while further operations are carried out
before the intermediate value is a g a h needed. The accumulator to be used in any
operation is simply specified in the op-code. A s a result when the instruction is to
be executed the proper accumulator is pulled out of the memory and exchanged with the
accumulator in the hardware location or if the hardware accumulator is the one
specified no exchange is necessary. This process clearly takes a longer time than if
the accumulators were in the processor hardware itself; however, for the processor of
interest the main interest is in saving storage and as a result the processor hardware
that would be devoted to multiple accumulator regis ters can be eliminated o r used in
other fashions, e .g . , for complex macro control, etc.

The storage

8- 1

C6-1476.16/33

The usefulness for memory savings of a second, third, or more accumulators
for intermediate storage must be evaluated for any given application. However, an
evaluation that was carried out (Ref. 6) showed that for guidance and navigation in
an avionics system addition of a second accumulator reduces the instruction count
by as much as 8 percent and the inclusion of six o r more accumulators bring this
reduction to as much as 12 percent. How much the saving is for scientific experi-
ments, telecommunications, etc. has not been determined, but it is clear that the
use of at least 2 accumulators is a very valuable asset for saving storage. Since
these accumulators a r e in memory, their only hardware cost is additional control
circuitry. It can be seen that the majority of the advantage of multiple accumulators
is accrued with the addition of the second accumulator, as a result each processor
cell will have at least two accumulators. The inclusion of additional accumulators
depends on both the availability of instruction bits to specify to which accumulator a
particular op-code is being applied and the relative usefulness of additional accumu-
lators versus additional index registers. These points are made clearer by the
discussion on each possible word size given later.

I
I
8
I

Indexing

Full word length index and bank registers are used. Therefore, there is no
real distinction between the two since they both accomplish address generation and
address modification i n the same manner.
o r index/bamk registers throughout this report.

They will be referred to as index, bank,

Indexing in each processor of the cells will be carried out by memory index
registers. For an instruction that requires banking or indexing, the proper index/
bank register o r registers are accessed from the memory, loaded into the memory
buffer register, and added to the memory address register (the memory address
register holds the instruction displacement obtained from the initial instruction word).
From this it can be seen that an instruction that needs to be banked and indexed
before picking up the operand would require four memory cycles, including the
memory cycle to pick up the instruction itself (accumulator may be in memory).

The advantage of indexing in terms of memory saving has been discussed in
many places. Two such discussions are given in References 6 and 2.
references and from an investigation of the requirements, it can be seen that the
inclusion of at least three index registers along with one o r more bank registers will
provide significant storage savings (20 percent or more); however, the addition of
more index registers than three provide significantly less storage savings. As a
result , at least three index registers will be included in the processor of each cell,
the use of additional index registers depends on the availability of instruction word bits
and on a comparison of the value of these additional registers to the value of addi-
tional accumulators, The index regis ters could also be used for temporary storage;
however, use of the index regis ters in this manner would provide no memory saving
unless register to register instructions were included (instructions carrying out
basic operations such as add from one index register to another index register).
The reason for this is that the index register used as temporary storage cannot be
addressed directly by bits in the op code if an operation is to be carried out between
the temporary storage and a memory operand.
register bits in the instruction word that must specify the indexing of the address for
the memory operand.
used as temporary storage and then add or subtract them, etc., could provide

From these

This is clear since there are index

Therefore, only operations that address two index regis ters

8-2

1
1
II
1
I
1
1
I
1

I
8
I
1
8
I
i
I
I
8
I
8
1
1
1
8
I
I
I

. C6-1476.16/33

an instruction saving over the use of memory addressing for intermediate results.
On the other hand note that i f accumulators are used for temporary storage, they
may easily be addressed by additional bits in the op-code portion of the instruction
word since these registers will not be used for indexing a memory address. Investi-
gation of the usefulness of register to register operations versus the usefulness of
providing accumulators that may be used for temporary storage has shown that the
register to register operations find very little usage in comparison to the accumulators.
As a result using accumulators instead of index regis ters for temporary storage pro-
vides a much greater storage savings.
index regis ters for temporary storage in order to provide increased execution speed
by using these registers for temporary storage. Note that this increased speed can-
not be obtained for the processor specified above since the temporary storage or
index regis ters are located in the memory and must be accessed with a memory
cycle in a similar fashion to any other operand held in the memory.)

(Reference 2 discussed the use of hardware

Indirect Addressing

Investigations of the usefulness of indirect addressing have been carried out and
are discussed in reference 2. It was found that indirect addressing in a machine with
a number of index registers had a limited usefulness; however, when it was used, it
provided some storage savings. (The primary use was for sub-routine linkage.) As
a result of this limited usage it is not recommended that an indirect bit be added t o
the instruction word, but that instead where applicable, certain instructions may use
only indirect addressing o r may have the facility to use indirect addressing if desired.

8.1.2 Word Size

The desire to save storage (to use the least number of bits in the memory
possible) gives a reason for considering small word sizes, If a small instruction
word can include enough features, it may provide enough flexibility such that it would
require only a slight increase in the number of words for instructions in the memory,
over that for larger instruction word. This may then result in smaller number of
bits in each cell 's memory for instructions. Larger instruction words are generally
used to offer more flexibility and increased processing speed. The increased proces-
sing speed is not required here, but the amount of storage saved by increased instruc-
tion word flexibility must be investigated. It is also necessary to determine the amount
of extra data words that would be necessary with a small word size. A small word
would require increased double precision and possibly some triple precision opera-
tions and would result in smaller byte sizes for storage of multiple bytes per word.

Twelve-Bit Word

A 12-bit instruction and data word was first investigated to see if it would offer

Five op-code bits
enough flexibility for a savings in the number of bits in the memory over a larger
word. The chosen 12-bit instruction word is shown in Figure 8-1,
should be sufficient to offer a reasonably large and flexible instruction repertoire
including the ability to use 2 accumulators. More than 32 instructions can be made
available by the use of op-code extension on instructions that do not require a memory
address. Two uses of the tag bits I/B, are shown in Figure 8-2.
have a bank register, B, contained in the memory added to the address bits in the

Figure 8-2a would

8-3

bits: 1 - 5 6 7 8 - 1 2

5 1
Address I op code 5 I I/B I Displacement

0 0

0 1

1 0

1 1

a. -

I/B = index/banking bits

Figure 8-1. 12-bit Instruction Word

T1 B 0 0

T2 B + T1 0 1

T3 B + T2 1 0

B + T3 T4 1 1

b. -

Figure 8-2. U s e of Two I/B Bits

instruction word for every memory access. In addition, one of three memory index
regis ters can also be added to the address. Figure 8-2b proposes using the index/
banking bits to specify one of four index/bank registers. Since this scheme does not
enable multiple indexing to be carried out, it will require a few more instructions
for execution of loops. However, it does not have the disadvantage of the scheme
specified in 8-2a, of requiring that the index register contents be changed any time
the bank register contents are changed. None the less, the scheme in Figure 8-2a
seems to be somewhat more flexible and would be chosen for a 12-bit word.

The last part of the instruction word provides 5 bits for specification of an
address within a bank.
too short to hold the majority of the programs and/or their associated data. This
means that a reasonably large number of load bank commands would have to be
inserted into the instruction stream both for jumping to separate parts of a program
that is located in a number of banks and for picking up data for separate banks. A
complete investigation of the programs is necessary to determine the percent
increase in storage due to these load bank commands; however, an investigation
(reference 7) showed that for navigation and guidance programs a 32 word bank could
cause substantial increases in the amount of memory required. This short bank is
especially inefficient in a 12 bit word where the index/banking scheme is relatively
inflexible,

Clearly this is only a 32 word bank; as a result it is probably

There are a number of additional problems with a 12-bit word. One of these
would be the inability of a memory word to contain the complete address for any word
in a group. A group may typically contain on the order of 20 cells of 512 words per

8-4

I
I
I
I
I
I
I
I
8
8
8
8
I
1(

I
8
I
I
I

CG-1476.16/33

cell. This would amount to at least 10,000 words per group, whereas a 12-bit word
can only address 4 ,000 words. It is presently felt that it will be reasonably common
for one cell to address a memory location in any other cell in its group; as a result,
a 12-bit word would require two locations to hold this address and the second location
would only need two of the 12 bits for additional addressing. This could amount to a
substantial inefficiency.

In addition, the use of a 12-bit word would certainly require triple precision
operations to be carried out in the navigation and guidance routines. This could cause
an inefficiency of bits in the data word and would also require the addition of triple
precision software. It also appears from the requirements that the half word size o r
byte size of G bits would be somewhat small for the needs of many of the scientific
experiments and other operations that will use byte manipulations. In particular, a
seven to eight bit byte would probably be necessary to offer sufficient flexibility. A
precise answer to the s ize of the byte reqtdred for efficient utilization of data storage
is difficult to provide; however, 7 or 8 bits would certainly offer more flexibility to
meet the requirements for byte manipulation when they are explicitly specified.

It should be noted when discussing byte manipulation that the number of bytes
per word should be a power of two for the most ease of operating on bytes.
most flexible byte manipulation is when the number of bits in the word is a power of
two.) If this is the case bytes can be manipulated and obtained from data words by
simple shifts of the addresses of the bytes. In addition, indexing with respect to
words o r with respect to bytes can be done simply by adding or by shifting and adding
the specified address to an index register.

(The

The addition of a number of half word o r byte instructions to the instruction
repertoire, such that bytes a r e directly accessed and operated on and then replaced
in memory without affecting the remainder of a memory word, may save a consider-
able amount of storage (e .g . , i n the scientific experiments in a spaceborne applica-
tion). The addresses of these instructions could handle the additional length required
due to byte specification since they would be relative to an initial address of a word i n
a list. (The initial address would be held in an index register.) Therefore, since a
considerable amount of byte manipulation is expected in at least the scientific experi-
ments, only word lengths that are a power of two and a multiple of some useful byte
length, such as G j 7 or 8 bits, will be considered, i .e . , 12 , 14, and 16 bit word
lengths. Longer words that are a power of two and a multiple of a byte and that
would hold two instructions per word could also be considered from the above stand-
point (24 bit words, 28 bit words o r 32 bit words). This may zesult in problems in
trying to pack data into the word for efficient byte manipulation. However, the most
important point is that for the requirements considered for the given space missions,
the majority of the words tend to be 12 to 16 bits and as a result a processor with a
considerably longer word length can result in inefficiencies of storing data.
the above it can then be seen that there appear to be no real gains f rom a long word
and there are some losses.

From

Because of the considerations given ear l ier a 12-bit instruction word has been
eliminated as a possibility. It does not seem to provide sufficient flexibility to save
storage over a longer word length. In fact, it appears that it would require consid-
erably more storage primarily due to the addressing and short bank problems,

8-5

CG-1476. 16/33

14-Bit Instruction Word

Two examples of the 14 bit instruction word are given in Figure 8-3. Figure
8-3a shows 6 bits used for the op-code. This should easily be sufficient to offer
instructions to take advantage of the multiple accumulators (as many as four would be
practical) , to provide byte manipulation instructions, and even to provide some com-
plex macros. Two bits a r e provided for index/banking using the same scheme as
discussed in relation to figure 8-2. The address section of the instruction word,
provides six bits f o r a 64 word bank. This bank should be sufficiently long for some
flexibility since full length bank/index registers are used. However, since only a
maximum of 4 index bank registers a r e available from the I/B bits, this 64 word bank
could provide some inefficiencies.

The addition of more index/bank registers could alleviate much of the possible
addressing problem due to the 64 word bank, Such a scheme is shown in the instruc-
tion word of Figure 8-3b.
the I/B bits have been increased to three to offer the usage schemes shown in Figure
8-4. There are clearly other possibilities of using 3 I/B bits, but those shown in
Figure 8-4 offer the most flexibility. The advantage of the scheme in Figure 8-4a
over than shown in Figure 8-4b is simply the availability of more total regis ters that
can be used for index-banking purposes.
a considerable amount of flexibility in terms of multiple indexing. In particular the
index registers do not have to be adjusted every time a bank register is changed.
(This is the case in the scheme in Figure 8-4a).
flexibility and the possibility that it may save some storage, the scheme in Figure 8-4b
would be chosen. The instruction word in Figure 8-3b also has six address bits for a
64 word bank.

Here the op-code bits have been decreased from 6 to 5, but

However, Figure 8-3b offers 5 registers and

Because of this multiple indexing

An explicit decision to choose between the instruction words shown in Figure 8-3a
and 8-3b cannot be made until investigation into the use of various op-codes is carried
out. After this a relative evaluation of the use of an additional bit for a 6-bit op-code
or for a three bit I/B specification can be evaluated so that either Figure 8-3a or 8-3b
can be chosen for a 14 bit instruction word.
around which scheme provided the most storage savings; however, there are additional
considerations, such as, the ease of programming, etc.

1 6 7 8 9 14
6

The question of course would center

Address Displacement
2

I/B
6 op code

8 - a

1 5 6 8 9 14

6 Address Displacement 3
I/B

5 op code

8-3b

Figure 8-3. 14-bit Instruction Word

8- 6

I
8 :
8
c
8
I
I
I
I
8
8
8
I
I
I
I
I
I
I

0 0 0

0 0 1

0 1 0

1 1 1

B

B + T1

B + T2

B + T7

a. -

C6-1476.16/33

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1 B1 + T

B + T 2 1

B1 + T3

B2 + T1

B2 + T2

3 B2 + T

b. -

Figure 8-4. Use of Three I/B Bits

A 14-bit word may be an efficient choice for the computation system in the space
missions under consideration, however, it does have some inefficiency problems due
to its relatively short length. For example, double precision operations of 28 bits will
not be sufficient for some navigation and guidance systems. As a result , triple pre-
cision will be required, but a triple precision word containing 42 bits will offer greater
accuracy than that required and consequently will waste some amount of data storage
area. In addition, the use of triple precision will require triple precision software to
be added. There is also some question a s to whether a seven bit byte will be sufficient
for byte manipulations in the scientific experiments.

There is, therefore, some push toward a 16-bit instruction word due to addi-
tional flexibility in the instruction word, the use of 8 bit bytes, and more flexibility in
bit manipulation, The latter point will be made clear by a renewed consideration of
the discussion of byte manipulation given earlier. If a consideL-able amount of bit
manipulation is necessary in the computations (in other words manipulation of bytes
that can vary in length from one bit to eight o r more bits), the use of an instruction
word with a number of bits that is a power of two would be useful. These varying
length bytes can then be packed into words and can be accessed by instructions by
simple shifts of the address in a fashion similar to that for the half word bytes dis-
cussed earlier. All that is necessary is to place the address of the first word in a
list in an index register and then to address all varying length bytes relative to this
initial address by using an address in the instruction word that represents the bit
number in the list. For example, a 16-bit word would simply require that the bit
address be shifted four positions to the right and then indexed with the initial word
address in the list. This would give a word address of the word that contained the
required bits, The four bits that were shifted right would be saved and used to choose
the particular starting bit in the chosen word.
if desired.)

(The bit address can also be indexed

8- 7

CG-1476.16/33

Clearly, i f a fairly large amount of bit manipulation was necessary, a word
size that is a power of two could provide substantial storage savings in that simple
instructions could easily be included to a u t o m tically car ry out the bit manipulations.
For example, a single instruction to load the accumulator with some desired byte
would simply pick up the address bits from the instruction word, shift them four posi-
tions to the right, save them, index the shifted address with the register specifying
the initial address in the word, pickup the word, and then left adjust it to the specified
starting bit location given in the instruction. Additional instructions to add another set
of bits to the ones that were loaded could also be implemented, These byte manipula-
tion instructions would take a reasonable amount of time; however, they would only
require a very small number of instructions for very complex manipulations.

The actual amount of byte manipulation required in the programs would have to
be extensively investigated before the above discussion could be used as a strong
reason for choosing a 16-bit word over a 14-bit word. However, there are also a
number of additional points to be considered when trying to choose a 16 o r 14 bit
instruction word for the cell processor and memory, A word size increase from 14
to 16 bits would increase the number of memory bits 14 percent i f the same number of
total words were required,
cient in te rms of storage savings than the 14 bit word the additional features and
flexibility gained with 1 6 bits would have to make up 14 percent or more of the memory.
The factors contributing to a decrease in the number of memory words with a 16-bit
word are the following: less instructions would be required due to the ability for addi-
tional indexing o r longer banks and/or additional op-codes, there would be no require-
ment for triple precision operations for data storage with a 16-bit word, and there
may be more flexibility of byte storage as discussed above.
of the storage usage of a 14- and 16-bit word cannot be carried out until the require-
ments are explicitly specified in the future.
show that there would not be a sizable memory difference between the two approaches
since the additional features possible with a 16-bit word would off-set the increase in
bits per word by a reduction in words required. As a result, a 16-bit word will be
chosen for the present design of the distributed processor cell since it will offer
additional flexibility in terms of meeting a variety of requirements while providing
somewhat greater programming ease. If in the future when a distributed processor
is to be designed explicitly for a specified mission o r set of missions and the require-
ments can be clearly specified, the precise trade-off can be carried out to decide
between a 14- and 16-bit word.
next paragraph.

Therefore, in order for the 16-bit word to be more effi-

A precise comparison

However, a rough evaluation seems to

The features used in a 16-bit word are given in the

16-Bit Word

Two useful instruction word formats for a 16 bit word are shown in Figure 8-5.
Clearly, there a r e other formats that are possible, but the two chosen appear to be
the most applicable to the space mission requirements. One other variation that
would use seven op-code bits and a lesser number of address o r I/B bits may be of
some interest. The additional op-code bit could be used to take full advantage of
multiple accumulators (four or more) and to provide an extensive set of macros to t r y
to save storage, However, a preliminary evaluation of the instruction set and macros
seems to indicate that a six bit op-code would be sufficient; as a result, only the two
6-bit op-code formats are shown in Figure 8-5. The instruction word in Figure 8-5a
uses 6 op-code bits, three bits for index banking (either of the schemes shown in
Figure 8-4 could be chosen), and a 7-bit bank. The seven bit bank should provide very

8- 8

t
8
I
I
8
I
I
8
I
8
8
8
I
I
8
8
I
I
I

C6-1476.16/33

few inefficiencies in terms of requiring load bank commands for jumping from pro-
gram to program or f rom one data bank to another. The instruction word in Figure
8-5b uses a 6-bit banked address and uses the additional bit to obtain 4 I/B bits.
These bits can then be used for two bank registers and any one of seven index regis-
ters. This gives a powerful banking indexing and multiple indexing capability, such
that a 64 word bank may cause very few inefficiencies. Further evaluation is
certainly necessary to obtain an accurate tradeoff between these two 16 bit instruction
word formats. Therefore, a decision between the two will not be made at this time.
It should also be pointed out here that a number of instructions will be added to the
op-code list in order to provide a reasonably flexible byte manipulation capability in
each cell, A s mentioned earlier, these will not require extensive processor hard-
ware when a 1 6 bit instruction word is used (a power of 2).

18-Bit Word

An eighteen bit instruction word with the format shown in Figure 8-6 could also
be considered.
save enough memory bits to warrant the increase from 16 to 18 bits. This can be
realized since the 16 bit word has very little memory restriction from either lack of
op codes o r bank size.
vides a less flexible word size for bit manipulation (word not a power of 2).
primary advantage of this larger word would be in terms of speed increases both due
to slightly less double precision operations and to a larger and more flexible instruc-
tion set.
instructions aimed at speed savings.) Therefore since storage is of primary concern
in the distributed processor, it is felt that an 18 bit word is not necessary.

However the addition of a longer bank and more op codes would not

The eighteen bit word would allow bigger bytes, but it pro-
The

(The instruction set for the 16-bit word will not contain a number of

8.1.3 Control Hardware

The control hardware in the cell's processor section could be implemented with
MOS gating o r with a microprogrammed control unit. The primary advantages of a
microprogrammed control unit are: ease of changing the instruction set by replacing
the unit (e. g., replacing a diode array fixed memory wafer with another wafer), ease
of design and implementation of the instruction set, and a relatively easy unit to
checkout. The latter advantage may be realized since instead of complicated gating
signals and combinations of signals spread throughout the processor the micropro-
grammed unit can be considered to be a black box with a finite fixed set of inputs giving
a finite fixed set of outputs; therefore, it can be checked out by sequencing through a
set of inputs that checks each memory location.

The distributed processor integrates memory and processing on a single wafer;
s o a primary consideration in constructing the control unit is its usage of wafer area
and its affekt on the yield of the processor section of the cell. A control unit con-
structed from MOS gating could take good advantage of redundant logic te rms and
could also be spread throughout the processor section of the wafer thus providing
efficient gate utilization and short interconnection lines, (Note that the micropro-
grammed control unit would require a considerable number of long control lines.)
Both of the above points would enable the gating control unit to use considerably less
area than the microprogrammed unit, Therefore even though the microprogrammed
control unit offers the advantages stated above a MOS gating network will be chosen
for the processor section control unit in order to minimize control area. This
decision can certainly be changed in the future, particularly if it is evaluated that the

8- 9

C6-1476.16/33

1 G 7 9 10 16

7 Address Displacement 3 I/B
G op code

5a. -

1 G 7 10 11 16

6 4 1 op code I I/B I Address Displacement

Bit 7 = 0 - B1

Bit 7 = 1 - B2

Bit 8 - 10 = 0 0 0

0 0 1 - T 1

0 1 0 - T 2

T7 1 1 1 -

- 5b.

Figure 8-5. 16-bit Instruction Words

1 7 8 11 1 2 18

7 Address Displacement 4 I op code 1 I/B
-__

Figure 8-6. 18-bit Instruction Word

8-10

~ C6-1476.16/33

instruction set may be changed often in the distributed processor in order to apply the
system to 8 variety of missions.
gating the processor area of the wafer mask must be remade; however i f a diode a r ray
fixed memory control unit is included in the processor a new one-zero pattern must
simply be encoded into the mask,)

8.2 PROCESSOR HARDWARE

However, a
general description will be given here along with some specific characteristics that
have been decided on thus far in order to further describe what a cell consists of.
Figure 8-7 shows a preliminary design of the processor section of the cell and the
memory registers used as part of the processor.
will be discussed below.

8.2.1 Memory, Operational, and Communication Registers

The use of the operational registers is very similar to that described in refer-
ence 2. The description from this reference, updated for the distributed processor,
is given below:

U - Hardware Upper Accumulator: The hardware upper accumulator is used to

(In order to change the instruction set with MOS

The design of the processor section is not complete at this time.

The various parts of this processor

hold one of the memory upper accumulators in any operation that uses them.

L - Lower Accumulator: The lower accumulator is used primarily in multiply,
divide, and double precision operations to hold the lower half of a data word.
This accumulator, and U have a one-bit extension onto their sixteen bits in
order to hold the overflow carries which may be generated in the multiply
operation.

U1. U2, U3, U4 - Memory Upper Accumulators: The memory upper accumulators
are the primary arithmetic and logical registers in single precision operations.
They are also used to hold the upper half of data in double precision operations
and to hold and manipulate data in shift and register operations.

P - Program Counter: This register is used to sequence the flow of control in
the processor. It is not only used to access instructions but also to provide
memory addresses for interrupt status word storage. It must therefore be
connected both to the ALTU and to the memory interface lines.

MAR - Memory Address Register: This register holds the memory address for
operand memory cycles. It is loaded with the address displacement f rom the
instruction word, B1 or B2 is added to it and, if indicated, one of the index
registers is also added to it. This register is necessary since the B and T
registers a r e in memory and must therefore enter the processor through MB;
as a result MB can not be used to hold the operand addresses.

MB - Memory Buffer: The memory buffer receives data and instructions from the
memory, sends data to the memory, holds the divisor in divide operations,
and the multiplicand in multiply operations. It also holds one of the operands
in all other arithmetic and logical operations with the memory. In addition to
the above tasks since the MB receives all instructions it keeps many of these
bits for the instruction decoding and operation.
B bit for address generation, the register t o be shifted in a shift operation and
one of the registers to be operated on in register operations.

For example, it holds the

8-1 1

T6

T5

T4

T3

, T2

1
T

B2

B1

u4

u3

u2

C6-1476.16/33

CONTROL
REGISTERS

512 WORD
MEMORY

I/O,
NEIGHBOR
COMMUNICATION
C ON T ROL

I 16 1
L EXT

I 1 EXT 1 16 U

I 16 M B

ADDER
LOGICAL
AND TRANSFER

1 1 P

I MAR '4

I 8 BCR

- MEMORY

OPERATIONAL
REGISTERS

I 18 C OM MUM CAT ION NIR

INSTRUCTION DECODING AND
CONT ROL GENE RATION

I BUSS, CONTROL

I CLOCK I
Figure 8-7. Processor Section

8-12

1

8
I
I
I
8
I
I
1
8
I
I

1
I
I
I
8
I
1

e

C6-1476.16/33

B1. B2 - ctBct Memory Index/Bank Registers: These regis ters hold both index and bank
values for address calculation and looping control. One of these two regis ters ,
indicated by the B bit, is added to the address displacement for all operand
address calculations

T1 to Tn - "Tn" Memory Index/Bank Registers: These registers have the same
functions as the B registers. The only difference is that operand addresses
can be generated without adding any Tn register to B plus the address displace-
ment. (Tag 000 specified no indexing with the Tn registers.) Seven registers are
shown in the figure. This would be the case if a 6 bit address decrement is used.
If a 7 bit address decrement is used in the instruction word then only three
Tn registers will exist. As mentioned ear l ier , this choice will be made later.

ALTU - Adder, Logical, and Transfer Unit: This unit contains all the circuitry for
carrying out arithmetic and logical operations including comparisons. It also
provides for transfers amongst all the hardware registers and detection of
overflows.

IR - Instruction Register: The instruction register holds the six bit op code through-
out the in st ruct ion execution.

TR - Tag Register: The tag register holds the Tn bits of the instructions. It is
necessary so that B plus the address displacement can be generated, stored in
MAR, and then added to Tn prior to an operand cycle. This register also holds
one of the register addresses in register operations. It also holds a two bit
op code extension for byte operations. This register will be 2 o r 3 bits long
depending on which 16 bit instruction format is selected.

SCR - Shift Count Register: This register holds the shift count for shift commands,
and for setting up bits in byte manipulation operations. It is counted down to
zero by one count for each shift. The register can be loaded from the ALTU in
addition to the MB since shift counts may be indexed prior to being loaded into
SCR for execution.

LENR - Length Register: This register is used for byte instructions to specify the
length of the byte that is being used. It is also used to hold the op code extension
bits in shift and register instructions.

BCR - Buss Communication Register: This register receives the present word from
the inter-cell buss. (Present indications a r e that an 8 bit bus will be used).
The communication control will then decide if the word is of interest to this cell.
The register is also used to place a word on the buss.

NIR - Neighbor and 1/0 Communication Register: This register is the buffer for the
serial neighbor to neighbor communication lines and also for the ser ia l 1/0 line
from a cell.

8-13

C6-1476.16/33

8 .2 .2 Accumulator Mechanization

A somewhat more detailed discussion of the accumulators is necessary in order
to understand their use. There are a number of methods of handling the four accumu-
lators in each cell. One method would assign tag bit combinations to each accumulator
such that U1 is the hardware accumulator and U2, U3 and U4 are the memory accumu-
lators. Each instruction would then specify one of these accumulators and cause its
contents to be exchanged with those of the hardware accumulator, U1 , for execution
of the operation. At the conclusion of the operation the hardware accumulator would
keep its current value so that any further operations of this value would be carr ied
out by specifying U1. This scheme uses the minimum amount of processor hardware
for handling the accumulators, but it makes it difficult for the programmer to keep
track of information that was initially or subsequently stored in one of the accumu-
lators. It would also be necessary at the ends of a branch to res tore the accumulators
to some specified ordering of information that is consistent between the branches.
Because of the above two disadvantages, this scheme was not chosen.

A second scheme would replace the named accumulator into its original location
at the completion of each operation. This means that unless the hardware accumulator,
U1, was in operation, a final exchange of the present value of U1 and the orignal
value of U 1 in one of the memory accumulators would have to be made. The main
disadvantage of this approach is that it requires two extra memory cycles for any
accumulator operation that does not use U1. This extra time could be considerable
since when an accumulator is brought into execution it is generally used for a few
instructions; as a result each operation would require two extra memory cycles.
For this reason this approach was not chosen.

A third approach as follows is also possible. Four sets of tag bits are held in

(In this scheme U 1 , U2, U3: and U4 can be in any of three memory posi-
the processor to specify the tag associated with the hardware o r memory accumulator
positions.
tions or the hardware position.) Each instruction operating with an accumulator
simply specifies the tag bits of the accumulator that it would like to use. This
accumulator is then found by an automatic comparison to the accumulator tag bits,
HA1, MA2, MA3, and MA4. The specified accumulator is then loaded into the
processor accumulator position (if it is not already there) and the accumulator tag
bits are updated to reflect the present locations of U 1 , U2, U3, and U4. (When the
machine is started, these tag bits must be loaded into HA1, MA2, MA3, and MA4 in
any order .) This scheme requires slightly more processor hardware than the other
schemes mentioned, but it has the advantage of leaving the last accumulator referenced
in the hardware accumulator position. Therefore only the first reference to a new
accumulator requires an extra memory cycle (the exchange of accumulators can be
carried out in one memory cycle). It should be noted that the accumulator tag bits in
the processor must be stored after an interrupt in order to enable proper restart ing of
an interrupted program.

A fourth approach similar to the last scheme is described below. Four locations
in memory, as shown in Figure 8-7, are used to hold U1 to U4. Whatever accumulator
is referenced by the instruction word tag bits, is placed in the hardware accumulator
position and the present contents of the hardware accumulator are returned to their
proper memory position. Two control bits HA1 a r e necessary so that the accumulator
presently in hardware can be specified and compared to the tag bits in the instruction.

1
1
I
I
8
I
1
I
I
8
I
B
I
I
I
I
8
8
I

8-14

CG-1476.16/33

Clearly, if the present hardware accumulator is specified no memory access is
required. This schcme then accomplishes the same operation as the last scheme
(it leaves the last referenced accumulator in the hardware position) but uses slightly
less processor hardware for control and one more memory location. It also requires
only one additional memory cycle when an accumulator from memory is specified
since the present accumulator value should be able to be replaced in its proper memory
position and the new accumulator picked up all in one memory cycle. A t the same time
the HA bits will be updated to the new accumulator tag. This scheme was selected
over the third approach described above because it should actually require less total
hardware usage. It requires less control and register hardware in the processing
section due to requiring only the HA tag bits. More important though is that less bits
will have to be stored upon an interrupt which may actually make up for the extra
memory location used for the accumulator.

8 . 2 . 3 Timing

A real time clock (RTC) and real time clock extension will be included in each
This cell in order to provide interrupts to enable scheduling of real time programs.

clock is basically the same as that discussed in reference 2 . section 6 . 1 . 1 ; a s a
result it will not be discussed here. The only new point is the fact that the system
clock here is not yet specified s o that the length of the RTC Ext. cannot be set; how-
ever the clock time (or bit time) wil l probably be on the order of 2ps so that the scheme
in Figure 8-7 with a 5-bit RTC. Ext. would be sufficient. The clock can be set and
read by two instructions. The bit time counter (BTC) will be four bits and will be
incremented by the clock. It will in turn increment the mode counter (MC) that is
used to keep track of the various phases of long instructions. Since all the instructions
have not yet been specified, the length of this counter will not be given. (I t must be
long enough to handle the longest instruction.) This timing hardware is also discussed
in reference 2, section 6 . 1 . 1 ,

8 . 3 INSTRUCTION SET

The specification of the instruction set is nearly complete and will be included
in the next report. A sample instruction execution sequence will be given here to
illustrate the use of the hardware previously described:

The execution of the add instruction will be given below; the following definitions
will be used:

(M):

U:

m: Address displacement

MAR: Memory Address Register

(P): Contents of program counter

MB: Memory Buffer Register

Contents of Addressed Memory Position

Any of the upper accumulators

8- 15

C6-1476.16/33

B: One of the B index/bank registers

Tn: One of the Tn index/bank registers

uh: Hardware upper accumulator

Um: Any of the memory upper accumulators

- + : Replaces

INSTRUCTION: ADD

ADU : (M) + U + U

This is executed as follows with no indexing and with U located in the hardware
location :

Instruction access: m - MAR, (P) -+ MB 1 memory cycle

Bank access: B + MAR - MAR 1 memory cycle

Operand access and execution: (M) + U - U 1 memory cycle

3 memory cycles

Tt is executed a s follows with indexing and with U located in one of the memory
accumulator positions:

Instruction access: m - MAR, (P) +MB 1 memory cycle

Bank access: B + MAR + MAR 1 memory cycle

Index Access: Tn + MAR -+ MAR 1 memory cycle

Accumulator access: Uh -+ Um (old accumulator 1 memory cycle
put in its location)

Um -+ uh (new accumulator
picked up)

Operand access and execution: (M) + U -+ U 1 memory cycle

5 memory cycles

'8-16

C6-1476.16/33

GLOSSARY

Calculated Address - An address calculated by a cell using a bank (base) register,
index register if one is specified, and the displacement field f rom the instruction,

Cel l Bus - The communication wires or lines connecting all the cells in a group.

CB - Control Byte

CC - Controller Cell

Control Byte - The first 8 bits of a control word. The control line. one of the lines
that make up the inter cell bus, is always set while this byte is being trans-
mitted.

Control Word - One or more bytes that a r e sent by the controller cell to control
other cells. The first byte of this word is always the control byte.

D16 - A 16 bit data word that follows an instruction. The te rm also re fers to a
GC modifier that specifies a D16 instruction modification.

D32 - The same as a D16. only the data word is 32 bits in length instead of 16.

DS - A form of instruction modification that specifies a list of 16 bit data words.
A given address is always present, and precedes the data and follows the
instruction.

Dependent State - A cell that responds to GC level instructions and to cell addresses.

Effective Address - The address used by the cell to specify which word of a cell 's
memory is to be used.

GC - Global control instructions. These are level and format control
instructions.

Given Address - An address that is specified by an instruction modifier. The
address always follows the instruction that has been moaified.

I - Immediate

Identification Register - The register in a cell containing the cell address. Cells
are given unique cell address by the controller cell.

Immediate - One form of instruction modification where the data to be used is the
displacement field of the instruction.

Independent Cel l - A cell whose state prevents the processor from responding to
GC level instructions sent over the inter cell bus. (Independent cells use local
communications.)

9-1

C6-1476.16/33

Instruction - An operation, such as add, multiply, in a program. The categories of
instructions are given in Table 5-2.

Instruction Modification - An instruction is preceded by a special instruction, called
a GC modifier, that modifies the normal operations performed by the instruction.

Level Register - The register in a cell containing the level number fo r this cell.

Respond (to a Control Word) - The cell receives all bytes of a control word, A cell
responds to a control word when the identification regis ter and control byte
address are equal, o r , for dependent cells, the level number in the cell and con-
trol byte level are equal. In all other cases , the cell will receive only the first
byte of a control word.

State - A cell exists functionally in one of seven states. A state defines how the
processor shall interpret instructions and where the instructions shall be
fetched. Table 5-1 lists the seven states.

9 -2

I *
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

C6-1476.16/33

REFERENCES

1. Study of Spaceborne Multiprocessing, first quarterly report , phase 11,
CG-147G. 13/33; Autonetics. Anaheim, California.

2 . Study of Spaceborne Multiprocessing, final report, phase I, C6-1476.10/33;
Autonetics, Anaheim. California.

3. Study of Spaceborne Multiprocessing, third quarterly report, C6-1476. 8/33;
Autonetics. Anaheim, California.

4. Volden. Jack E . . "The Cordic Computing Technique".
Western Joint Computer Conference, March 1959.

Proceedings of the

5. Hartig, David, "Microelectronic Digital Stabilization Computerf1, Bureau of
Naval Weapons Symposium for Rotating and Static Components, April 22, 1964.

G . Results of Multi-Accumulator Study for Next Generation Computer; Internal
Report: Autonetics, Anaheim, California.

7. Computer Memory Banking Study; Internal Report; Autonetics, Anaheim,
California

R-l/R-2

